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Notation

We consider k -uniform hypergraphs with vertex set
V = [n] = {1,2, . . . ,n} and edges E ⊆

(V
k

)
.

A proper q-coloring of H = (V ,E) is a map φ : V → [k ] such
that no edge is monochromatic.

The chromatic number χ(H) is the minimum value q such that
H has a proper q-coloring.

A hypergraph H is simple if |e ∩ f | ≤ 1 for all e, f ∈ E .

The random hypergraphs Hn,m:k (resp. Hn,p:k ) have vertex set
[n] and m random edges from

(V
k

)
(resp. each edge in

(V
k

)
is

included with probability p).
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The chromatic number of random hypergraphs

The case of random graphs, k = 2, has been well-researched.
For k ≥ 3 we have

Theorem (Dyer, Frieze, Greenhill (2015))

Define uk ,q = qk−1 ln q for integers k ≥ 2 and q ≥ 1. Suppose
that k ≥ 2, q ≥ 1, and let c be a positive constant. Then for
H = Hn,cn;k ,

1 If c ≥ uk ,q then w.h.p. χ(H) > q.
2 If k ≥ 2 and max{k ,q} ≥ 3 then there exists a constant

ck ,q ∈ (uk ,q−1, uk ,q) such that if c < ck ,q is a positive
constant then w.h.p. χ(H) ≤ q.

In particular this generalises an earlier result of Achlioptas and
Naor [2005].

The theorem was later sharpened by Ayre, Coja-Oghlan and
Greenhill [2018].
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MCMC Algorithms for coloring (random) graphs

Given a graph G and q ≥ χ(G), there is the problem of
generating a (near) random proper coloring of G.

The first result in this area is due to Jerrum (1995) who showed
that an MCMC approach works for q ≥ 2∆(G).

This was improved to q ≥ 1.76∆ by Vigoda (2000).

This was only recently improved to q ≥ (1.76− ε)∆ by Chen
and Moitra (2018) and by Delcourt, Perarnau and Postle
(2018). Here 0 < ε ≤ 9.4× 10−5.

For sparse random graphs, ∆ is not a good measure of the
number of colors needed.
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MCMC Algorithms for coloring (random) graphs

Dyer, Flaxman, Frieze and Vigoda (2006) showed that w.h.p.
q = o(∆) suffices for the random graph Gn,p,p = d/n.

After a series of improvements by Mossel and Sly; Efthymiou it
has now been shown by Efthymiou, Hayes,Štefankovič and
Vigoda that w.h.p. q ≈ 1.7632 . . . d is sufficient.

An important issue in analysing Markov chains for generating
colorings is ergodicity i.e. can the chain reach all colorings.

DFFV showed that Glauber Dynamics (where each move
changes the color of a single vertex) is ergodic w.h.p. for
q ≥ d + 1.

We now discuss improvements on this ergodicity bound..
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Ergodicity of Glauber Dynamics

For a (hyper)graph H and a positive integer q we let Ωq(H)
denote the set of proper q-colorings of H.

We then let Γq(H) denote the graph with vertex set Ωq(H) and
an edge φ, ψ whenever φ, ψ disagree on the color of exactly
one vertex.

Molloy (2016) proved, for the case k = 2,

if q .
d

log d
then Γq(Gn,d/n) has no giant component.

Here the asymptotics . are with respect to growing d .

Recall that d/ log d is the approximate number of colors
required by the Greedy Coloring Algorithm.
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Ergodicity of Glauber Dynamics

Let

α =

(
(k − 1)d

log d − 5(k − 1) log log d

) 1
k−1

, β = 3 log3k d .

Theorem (Anastos and Frieze (2018))

If k ≥ 2 and p = d
(n−1

k−1)
and d = O(1) is sufficiently large, then

(i) If q ≥ α + β + 1 then w.h.p. Γq(Hn,p;k ) is connected.
(ii) If q ≥ α + 2β + 1 then the diameter of Γq(Hn,p;k ) is O(n)

w.h.p.
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Ergodicity of Glauber Dynamics

α, β-colorability: Let V1,V2, . . . ,Vα be a sequence of
independent sets of H such that for each j ≥ 1, Vj is a maximal
independent subset of H − V<j . We call this a maximally
independent sequence of length α.

The first α color classes chosen by the greedy algorithm will be
a maximally independent sequence of length α.

We say that a hypergraph H is (α, β)-colorable if there does
not exist a maximally independent sequence of length α such
that H − V≤α contains a β-core.
(A β-core is set of vertices that induces a hypergraph of
minimum degree ≥ β.)
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Ergodicity of Glauber Dynamics

Theorem
If H is (α, β)-colorable and q ≥ α + β + 1 then Γ(H,q) is
connected.

Theorem
W.h.p. Hn,d/n;k is (α, β)-colorable for the given values of α, β.

Proof via a few first moment calculations.

α =

(
(k − 1)d

log d − 5(k − 1) log log d

) 1
k−1

, β = 3 log3k d .
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Ergodicity of Glauber Dynamics

Definition
A coloring with color sets V1,V2, . . . ,Vα+β is said to be a good
greedy coloring if (i) V1,V2, . . . ,Vα is a maximally independent
sequence of length α and (ii) V \

⋃
`≤α

V` has no β-core.

Definition
A coloring with color sets V1, V2, . . . , Vα+β is said to be a good greedy coloring if (i) V1, V2, . . . , Vα is a

maximally independent sequence of length α and (ii) V \
⋃
`≤α

V` has no β-core.

Theorem
Let H be an (α, β)-colorable hypergraph, q ≥ α + β + 1 and χ
be a [q]-coloring of H. Then there exists a good greedy coloring
τ of H such that there exists a path in Γq(H) from χ to τ .

Theorem
Let H be an (α, β)-colorable hypergraph, q ≥ α + β + 1 and let
χ, τ be two good greedy colorings. Then there exists a path
from χ to τ in Γq(H).
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Ergodicity of Glauber Dynamics

Theorem
Let H be an (α, β)-colorable hypergraph, q ≥ α + β + 1 and χ
be a [q]-coloring of H. Then there exists a good greedy coloring
τ of H such that there exists a path in Γq(H) from χ to τ .

Let C1, . . . ,Cq be the color classes of χ. Let V1 ⊇ C1 be a
maximal independent set containing C1. Re-color V1 \ C1 with
color 1. Then Ci ← Ci \ V1, i ≥ 2.

Repeat another α− 1 times to create χ′. This will follow a path
in Γ.

W = V \
⋃α

i=1 Vi has no β-core and we can re-color it from
[α + 1, α + β] to give us a good greedy coloring. This needs a
liitle explanation.
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Ergodicity of Glauber Dynamics

Let W = V \
⋃

1≤i≤α
Vi . Because H is (α, β)-colorable, we find

that W has no β-core. Because W has no β-core there exists a
proper coloring τ ′ of the subgraph of H induced by W that uses
only colors in [α + β] \ [α]. Set τ to be the coloring that agrees
with χ′ on V \W and with τ ′ on W .

For 0 ≤ i ≤ r let τi agree with τ on {v1, ..., vi} and with χ on
{vi+1, ..., vr}. On V \W it agrees with both. τ0 = χ and τr = τ .
By induction there is a sequence of changes from χ to τi that is
proper except perhaps for {vi+1, . . . , vr}.

To go from i to i + 1, follow i sequence and re-color vi+1
whenever it threatens to cause an improper coloring. Give vi+1
its τ color at the end of the sequence.

Alan Frieze, Carnegie Mellon University Coloring (Random) Hypergraphs



Ergodicity of Glauber Dynamics

Let W = V \
⋃

1≤i≤α
Vi . Because H is (α, β)-colorable, we find

that W has no β-core. Because W has no β-core there exists a
proper coloring τ ′ of the subgraph of H induced by W that uses
only colors in [α + β] \ [α]. Set τ to be the coloring that agrees
with χ′ on V \W and with τ ′ on W .

For 0 ≤ i ≤ r let τi agree with τ on {v1, ..., vi} and with χ on
{vi+1, ..., vr}. On V \W it agrees with both. τ0 = χ and τr = τ .

By induction there is a sequence of changes from χ to τi that is
proper except perhaps for {vi+1, . . . , vr}.

To go from i to i + 1, follow i sequence and re-color vi+1
whenever it threatens to cause an improper coloring. Give vi+1
its τ color at the end of the sequence.

Alan Frieze, Carnegie Mellon University Coloring (Random) Hypergraphs



Ergodicity of Glauber Dynamics

Let W = V \
⋃

1≤i≤α
Vi . Because H is (α, β)-colorable, we find

that W has no β-core. Because W has no β-core there exists a
proper coloring τ ′ of the subgraph of H induced by W that uses
only colors in [α + β] \ [α]. Set τ to be the coloring that agrees
with χ′ on V \W and with τ ′ on W .

For 0 ≤ i ≤ r let τi agree with τ on {v1, ..., vi} and with χ on
{vi+1, ..., vr}. On V \W it agrees with both. τ0 = χ and τr = τ .
By induction there is a sequence of changes from χ to τi that is
proper except perhaps for {vi+1, . . . , vr}.

To go from i to i + 1, follow i sequence and re-color vi+1
whenever it threatens to cause an improper coloring. Give vi+1
its τ color at the end of the sequence.
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Ergodicity of Glauber Dynamics

Lemma

Let H be an (α, β)-colorable hypergraph, q ≥ α + β + 1 and let
χ, τ be two good greedy colorings. Then there exists a path
from χ to τ in Γq(H).

There exists a maximal independent sequence V1,V2, . . . ,Vα
of length α such that if V ′ = V \

⋃
1≤i≤α

Vi then (i) for i ∈ [a], τ

assigns the color i to v ∈ Vi and (ii) τ assigns only colors in
[α + β] \ [α] to vertices in V ′.

Let c be a color not assigned by χ. Starting from χ we recolor
all vertices that are colored 1 by color c to create χ̄. Then we
continue from χ̄ by recoloring all the vertices in V1 by color 1
and we let χ′ be the resulting coloring. Clearly there is a path
P1 from χ to χ′ in Γ.

Alan Frieze, Carnegie Mellon University Coloring (Random) Hypergraphs



Ergodicity of Glauber Dynamics

Lemma

Let H be an (α, β)-colorable hypergraph, q ≥ α + β + 1 and let
χ, τ be two good greedy colorings. Then there exists a path
from χ to τ in Γq(H).

There exists a maximal independent sequence V1,V2, . . . ,Vα
of length α such that if V ′ = V \

⋃
1≤i≤α

Vi then (i) for i ∈ [a], τ

assigns the color i to v ∈ Vi and (ii) τ assigns only colors in
[α + β] \ [α] to vertices in V ′.

Let c be a color not assigned by χ. Starting from χ we recolor
all vertices that are colored 1 by color c to create χ̄. Then we
continue from χ̄ by recoloring all the vertices in V1 by color 1
and we let χ′ be the resulting coloring. Clearly there is a path
P1 from χ to χ′ in Γ.

Alan Frieze, Carnegie Mellon University Coloring (Random) Hypergraphs



Ergodicity of Glauber Dynamics

Now V1 is colored the same in both.

Let χ′1 be the coloring of V \ V1 induced by χ′. Transform χ′1 to
a good greedy (α− 1, β) coloring and then use induction on α
to reduce to the (0, β) case.

The (0, β) case involves re-coloring a hypergraph without a
β-core and this has been dealt with.
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Randomly Coloring Arbitrary Simple Hypergraphs

We discuss using Glauber Dynamics to randomly color an
arbitrary simple hypergraph.

Frieze and Melsted (2011) gave examples of blocked colorings:

Theorem
Let k ≥ 3 and let m,q be sufficiently large. Suppose that
ε ≤ 1

10k! . Then there exists a hypergraph H with qm vertices
and maximum degree ∆ ∈ [ εqm

2(k−1)! ,
2εqm

(k−1)! ] and a coloring with q
colors so that there are no Glauber moves.

So, for small q we have to be satisfied with generating a (near)
random coloring from a giant component of Γ.
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Randomly Coloring Arbitrary Simple Hypergraphs

Theorem

Let H be a k-uniform simple hypergraph with maximum degree
∆ where k ≥ 3. Suppose that

2∆ ≥ q ≥ max
{

Ck log n,10kε−1
k ∆1/(k−1)

}
.

Suppose that the initial coloring X0 is chosen randomly from
qV . Then for an arbitrary constant δ > 0 we have

dTV (Xt ,Y ) ≤ δ

for t ≥ tδ, where tδ = 2n log(2n/δ).
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Randomly Coloring Arbitrary Simple Hypergraphs

Let X be a coloring of V . For a vertex v ∈ V and 1 ≤ i ≤ k − 1

Ev ,i,X = {e : v ∈ e and | {X (w) : w ∈ e \ {v}} | = i}
be the set of edges e containing v in which e \ {v} uses

exactly i distinct colors under X .

Let yv ,i,X = |Ev ,i,X |, so that the number of bad colors for v is
given by |B(v ,X )| = yv ,1,X for all v ,X .

We define the sequence ε = εk , ε
2
k , . . . , ε

k−2
k .

Definition
We say that X is ε-bad if ∃v ∈ V ,1 ≤ i ≤ k − 2 such that

yv ,i,X ≥ µi where µi = (εkq)i .

Otherwise we say that X is ε-good.
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Randomly Coloring Arbitrary Simple Hypergraphs

We start the chain Xt with a random q-coloring from qV and
then couple it against a random proper coloring Yt .

If we know that both Xt ,Yt are ε-good then we can show in a
straightforward manner that their Hamming distance decreases
in expectation in a single iteration.

To show that a random proper coloring is ε-good w.h.p. we use
the local lemma in the following way.
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Randomly Coloring Arbitrary Simple Hypergraphs

Let PrΩ refer to uniform probability on qV and let PrQ refer to
uniform probability on proper colorings.

Consider a random coloring X ∈ qV . For a vertex v ∈ V we let
Av = Aε(v) denote the event {v is not ε− good}. For an edge
e ∈ E we let Be denote the event {e is not properly colored}.

p = PrΩ(Be) =
1

qk−1 .

If xe = 2/qk−1 then

p ≤ xe
∏

f∈E ,f∩e 6=∅

(1− xf ).
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Randomly Coloring Arbitrary Simple Hypergraphs

It follows from Haeupler, Saha and Srinivasan (2011) that

PrQ(Av ) ≤ PrΩ(Av )
∏

f∈Nv

(1− xf )−1,

where Nv = {f : f ∩ e 6= ∅ and f ∩ e for some e 3 v}.

The proof of HSS is a straightforward adaptation of the usual
Local Lemma proof.

For our given q, PrΩ(Av ) is small and then so is PrQ(Av ).
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Open Questions

1 Does Glauber Dynamics succeed in polynomial time on
random Hypergraphs with q = O(n1/(k−1)) colors?

2 Remove the Ω(log n) requirement for coloring arbitrary
simple hypergraphs.

Guo, Liao, Lu and Zhang (2018) deals with
deterministically, approximately, counting colorings. The
requirements are

k ≥ 28,q ≥ 315∆14/(k−14).
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THANK YOU
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