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Complexity classes between P and NP

NP

There are many problems that lie between P and NP

» Factoring, graph isomorphism, computing Nash equilibria,
local max cut, simple-stochastic games, ...



Complexity classes between P and NP

NP

TFNP

FNP is the class of function problems in NP

» Given polynomial time computable relation R and value x
» Find y such that (x,y) € R



Complexity classes between P and NP

NP

TFNP

TENP is the subclass of problems that always have solutions

» Contains factoring, Nash equilibria, local max cut,
simple-stochastic games, ...



Complexity classes between P and NP

PPAD and PLS are two subclasses of TFNP



PPAD (Papadimitriou 1994)

End-of-the-Line:

start
Given a graph G of in/out degree at

most 1 and a source start vertex

find another vertex of degree 1

end



PPAD (Papadimitriou 1994)

start Catch:
0000 The graph is exponentially large
0101 It is defined by

» A circuit S that gives a successor
» A circuit P that gives a predecessor

5(0000) = 0101

P(0101) = 0000
end



PPAD (Papadimitriou 1994)

start Problem A is

» in PPAD if A reduces to EOTL

» PPAD-complete if EOTL also
reduces to it

end



Brouwer: A PPAD-complete problem

Given a continuous function f : [0, 1] — [0, 1]?

» find a fixpoint: a point x such that f(x) = x



PPAD-complete problems
» computing mixed equilibria in games
» computing Brouwer fixed points

» computing market equilibria




Polynomial Local Search (PLS)

(8 Given
» a DAG

> a starting vertex
Find

> a sink vertex




Polynomial Local Search (PLS)

Catch:
The graph is exponentially large

Defined by
» A circuit S giving the
successor vertices
» A circuit p giving a
potential

Every edge decreases the
potential

p(S(v)) < p(v)



PLS-complete problems:
» |ocal max cut
» computing pure equilibria in congestion games

» computing stable outcomes in hedonic games




Complexity classes between P and NP

Are there interesting problems in PPAD and PLS?




Are there interesting problems in PPAD and PLS?

Yes!

1. Finding a mixed NE of a Team Polymatrix Game

2. Finding a mixed NE of a Congestion Game

3. Solving a Simple Stochastic Game

4. Solving a P-matrix Linear Complementarity Problem
5. Finding a fixed point of a Contraction Map

6. Solving reachability on a switching network



Complexity classes between P and NP

CLS was defined to capture these problems
(Daskalakis and Papadimitriou, 2011)



Continuous Local Search (CLS)

CLS is a Brouwer instance that also has a potential

» Continuous direction function f : [0,1]3 — [0, 1]3
» Continuous potential function p : [0,1]3 — [0, 1]



Continuous Local Search (CLS)

Find a point x where the potential does not decrease

p(f(x)) = p(x)



Continuous Local Search (CLS)

CLS contains all of the problems we saw on the previous slide



CLS combines

» the continuous PPAD-complete problem Brouwer

» the canonical PLS-complete problem

This work

Why not combine both canonical problems?




End of Potential Line (EOPL)

Combines the two canonical
complete problems

0 » An End-of-the-Line instance
» That has a potential

Find
@ .
@ » The end of a line

> A vertex where the potential
increases

end



Unique EOPL

start

end

In Unique EOPL, it is promised that the line is unique



Complexity classes between P and NP

EOPL naturally lies at the intersection of PPAD and PLS

» We also show that it is contained in CLS



Our main results

Unique EOPL

[ Unique Sink Orientation }
X

P-matrix Linear
Complementarity Problem

Fixpoint of
Contraction Map

~ 7

[ Simple Stochastic Games }

T

Discounted Games

T

Mean-payoff games




Contraction Maps
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f is contracting if

[f(x) — f(x")| <c:|x—x'| fore<1




Contraction Maps
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Banach’s fixpoint theorem

» Every contraction map has a unique fixpoint




Contraction Maps
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Problem: given a contraction map as an arithmetic circuit

» Find a fixpoint or a violation of contraction



Contraction to Unique EOPL
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First we discretize the problem

» Lay a grid of points over the space

» For each dimension construct a direction function




Contraction to Unique EOPL
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Discrete contraction

» Find a point that is 0 in all dimensions



Contraction to Unique EOPL

A point is on the surface if it is 0 for some direction

» Every left/right slice has a unique point on the blue surface

» At each of these, we can follow the red direction function



Contraction to Unique EOPL

The path

N

Start at (0, 0)
Find the blue surface
Take one step in the red direction

If not at red surface, go to 2



Contraction to Unique EOPL

The potential

> The path never moves left

> In every slice, it either moves moves up or down



Contraction to Unique EOPL

T——»

So we can use a pair (a, b) ordered lexicographically where

» ais the x coordinate of the vertex
> bis

» y if we are moving up

» —y if we are moving down

This monotonically increases along the line



Contraction to Unique EOPL

T——»

Actually, this formulation only gives us a forward circuit

» But the line is unique

» So we can apply a technique of Huba¢ek and Yogev (2017) to
make the line reversible



Contraction to Unique EOPL

T——»

This generalises to arbitrary dimension

» We walked along the blue surface to reach the red surface



Contraction to Unique EOPL

In 3D

» Walk along the red/blue surface to find the green surface
» Between any two points on the red/blue surface
» Walk along the blue surface to find the red surface



Contraction to Unique EOPL

Theorem

Contraction is in EOPL, Promise-Contraction is in UniqueEOPL



Consequences for contraction

Theorem

Given an arithmetic circuit C encoding a contraction map
f:[0,1]9 — [0,1]¢

with respect to any £, norm
there is an algorithm, based on a nested binary search
that finds a fixpoint of f in time

» polynomial in size(C)

» exponential in d

Before, such algorithms were only known for £ and £




Our main results

Unique EOPL

[ Unique Sink Orientation }
X

P-matrix Linear
Complementarity Problem

Fixpoint of
Contraction Map

~ 7

[ Simple Stochastic Games }

T

Discounted Games

T

Mean-payoff games




Unique Sink Orientations of Cubes

Orient the edges of an n-dimensional cube

» So that every face has a unique sink

>




Unique Sink Orientations of Cubes

A 3-dimensional USO




Unique Sink Orientations of Cubes

Can be cyclic:




UniqueSinkQOrientation

Given a polynomial-time boolean circuit
c:{0,1}" — {0,1}"

that maps a vertex v of then n-cube to the orientation at v:

» find the sink of the cube
> or a violation to the USO property




Why is USQO interesting?

Long line of work on UniqueSinkQrientation:

P-matrix LCP reduces to UniqueSinkOrientation
[Stickney and Watson 78]

Non-trivial USO algorithms (previously best for P-matrix LCP)
[Szabé and Welzl '01]

Some problems reduce to acyclic USO
> parity games
» mean-payoff games
» discounted games

» simple-stochastic games



USO in EOPL

Y

Previously

» USO was known to be in TFNP
» But not PPAD or PLS



USO in EOPL

Y

Theorem
USO is in EOPL, Promise-USO is in UniqueEOPL

Using similar techniques to Contraction



USO in EOPL

Y

So we put USO in EOPL, CLS, PPAD, and PLS



Our main results

Unique EOPL

[ Unique Sink Orientation }
X

P-matrix Linear
Complementarity Problem

Fixpoint of
Contraction Map

~ 7

[ Simple Stochastic Games }

T

Discounted Games

T

Mean-payoff games




P-matrix Linear Complementarity Problem

Input:
» Vectors My, M, ..., My

» A vector q



P-matrix Linear Complementarity Problem

A complementary cone is all non-negative linear combinations of
» A subset of My, My, ..., My, with
» —e; in place of each vector not chosen



P-matrix Linear Complementarity Problem

The linear complementarity problem (LCP)

» Find a cone that contains q



P-matrix Linear Complementarity Problem

P-matrix LCPs

» The cones are guaranteed to exactly partition the space



P-matrix Linear Complementarity Problem

We reduce P-matrix LCP to EOPL using Lemke’s algorithm
» Start at the vector d in the cone —e;, —e
» Walk through the sequence of cones from d to q



P-matrix Linear Complementarity Problem

The progress along the path gives us a potential
» The algorithm has a variable z
» z corresponds to distance along the path

> it monotonically decreases



P-matrix LCP — EOPL

If the input is not a P-matrix, then z may increase

» We deal with this by introducing new solutions
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P-matrix LCP — EOPL

Theorem

P-matrix LCP is in EOPL

Theorem

Promise P-matrix LCP is in Unique EOPL



Consequences for P-matrix LCP

Blowup of reduction to EOPL is only linear
This allows us to apply an algorithm of Aldous (1983)

Gives fastest-known (randomized) algorithm for P-matrix
LCP, with running time

22 - poly(n)




[HY SODA17]

UnlqueEOPL
/ USO\
Contraction P-LCP
\ /'

Simple Stochastic Games

t
Discounted Payoff Games

t
Mean-payoff Games

t
Parity Games



Conjectures

USO is hard for EOPL
Promise USO is hard for UniqueEOPL

Contraction is hard for EOPL
Promise Contraction is hard for UniqueEOPL

P-matrix LCP is hard for EOPL
Promise P-matrix LCP is hard for UniqueEOPL




Conjectures

[ CLS # UniqueEOPL

CLS =? EOPL

» Could go either way
» If false, which further problems in CLS are also in EOPL?



Thanks!




