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(Boolean) holant problems

Fix a set of functions F .

Throughout, functions take Boolean inputs and yield algebraic complex
outputs.

Name HOLANT (F)

Instance a signature grid Ω = (G,F , π), where
I G = (V ,E) is a finite multigraph
I π : V → F :: v 7→ fv is a map that furthermore creates a

bijection between E(v) and the arguments of fv
Output the number

HolantΩ :=
∑

σ:E→{0,1}

∏
v∈V

fv
(
σ|E(v)

)



Problems expressible in the holant framework

counting perfect matchings: ∑
σ:E→{0,1}

∏
v∈V

ONEdeg(v)(σ|E(v))

where ONEn(x1, . . . , xn) =

{
1 if

∑n
k=1 xk = 1

0 otherwise

also:
I many other counting problems defined on graphs
I counting graph homomorphisms
I counting constraint satisfaction problems
I partition functions from statistical physics
I classical simulation of quantum computations
I ...
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Counting complexity dichotomies

Complexity classes
I FP: counting problems that can be solved in polynomial time
I #P: counting complexity equivalent of NP

Unless FP is equal to #P, there exist intermediate problems in #P \ FP,
which are not #P-complete (by a variant of Ladner’s theorem).

In the holant framework, all existing complexity classifications are
dichotomies, partitioning families of functions into

I those that are polynomial-time solvable, and
I those that are #P-hard

(without any #P-intermediate problems)



Holant families and existing results

No full complexity classification for HOLANT (F) yet

Allowing additional unary functions:
I HOLANT∗ (F) := HOLANT (F ∪ {all unaries}) [Cai, Lu, Xia 2011]
I HOLANT+ (F) := HOLANT (F ∪ {δ0, δ1, δ+, δ−}) [here]
I HOLANTc (F) := HOLANT (F ∪ {δ0, δ1}) [here]

where{
δ0(0) = 1
δ0(1) = 0,

{
δ1(0) = 0
δ1(1) = 1,

{
δ+(0) = 1
δ+(1) = 1,

and

{
δ−(0) = 1
δ−(1) = −1.

Allowing additional equality functions:
I #CSP(F) = HOLANT (F ∪ {EQk | k ∈ N}) [Cai, Lu, Xia 2009]
I #CSPc

2(F) := HOLANT (F ∪ {δ0, δ1} ∪ {EQ2k | k ∈ N})
[Cai, Lu, Xia 2017]
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Holographic transformations
There is a bijection between functions and lists of their values

f : {0,1}n → C ↔ f ∈ C2n

Example: g(x , y) = 2x + y ↔ g = (0,1,2,3)T

The holographic transformation of an n-ary function f by an invertible 2× 2
matrix M over C is

M ◦ f ↔ (M ⊗ . . .⊗M︸ ︷︷ ︸
n

) f.

Example: If M =
(

0 −1
1 0

)
, then (M ◦ g)(x , y) = 3− 4x − 5y + 6xy , because

(M ⊗M)g =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




0
1
2
3

 =


3
−2
−1
0
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Holographic transformations and complexity

Valiant’s holant theorem
Suppose F ,G are sets of functions and suppose M is an invertible 2× 2
matrix. Then

HOLANT (F | G) ≡T HOLANT
(
M ◦ F | (MT )−1 ◦ G

)
.

If O is a 2× 2 orthogonal matrix, then

HOLANT (F) ≡T HOLANT (O ◦ F) .

Example: As M =
(

0 −1
1 0

)
is orthogonal,

HOLANT ({g,EQ3}) ≡T HOLANT ({M ◦ g,M ◦ EQ3}) ,

where g(x , y) = 2x + y and (M ◦ g)(x , y) = 3− 4x − 5y + 6xy .
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Holant gadgets

f2 f1

f4
f3

for any x : Eext → {0,1}:

g(x) =
∑

y:Eint→{0,1}

∏
v∈V

fv (x,y|E(v))

Let 〈F〉 be the closure of F under taking holant gadgets, then

HOLANT (F) ≡T HOLANT (〈F〉)

A holant gadget with zero internal edges is
called a tensor product

f1

f3
f2
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Tractable families, part 1

HOLANT (F) can be solved in polynomial time in the following cases:

I unary and binary functions: F ⊆ 〈{f | arity(f ) = 1 or arity(f ) = 2}〉

I generalised equality functions: there exists M satisfying
MT M ∈

{(
1 0
0 1

)
,
(

0 1
1 0

)}
, such that

F ⊆
〈
M ◦

{
f
∣∣ ∃a ∈ {0,1}arity(f ) s.t. ∀x /∈ {a, ā}, f (x) = 0

}〉
I generalised matching functions: there exists M satisfying

MT M =
(

0 1
1 0

)
, such that

F ⊆ 〈M ◦ {f | f (x) = 0 unless |x| ≤ 1}〉

[Cai, Lu, Xia 2011]



Tractable families, part 2

Let A be the set of affine functions

f (x) = c χAx=b i l(x) (−1)q(x)

HOLANT (F) can be solved in polynomial time in the following cases:
I transformable to affine: there exists invertible M satisfying

MT ◦ {EQ2, δ0, δ1} ⊆ A and F ⊆ M ◦ A

[Cai, Huang, Lu 2012]
I local affine: F is a subset of⋃

n∈N

{f | if f (x1, . . . , xn) 6= 0 then (T x1 ⊗ . . .⊗ T xn)f ∈ A}

where

T 0 =

(
1 0
0 1

)
and T 1 =

(
1 0
0 exp(iπ/4)

)
[Cai, Lu, Xia 2017]
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Quantum states and entanglement

A state of n qubits (quantum bits) is described by a vector in

C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n

∼= C2n

A quantum state of multiple qubits is fully entangled if it cannot be written
as a tensor product.

For example:
I (1,0,0,1) is fully entangled
I (0,0,0,−1,0,1,0,0) = (0,−1,1,0)⊗ (0,1) is not fully entangled



Entanglement classification under SLOCC

SLOCC = ‘stochastic local operations and classical communication’

Define an equivalence relation on vectors in C2n :

f ∼ g ⇐⇒ f = (A1 ⊗ . . .⊗ An)g

for some invertible 2 by 2 matrices A1, . . . ,An

Fully entangled three-qubit states: If f ∈ C23 is fully entangled, then either
I f ∼ EQ3, or
I f ∼ ONE3
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Correspondences

Counting complexity theory Quantum information theory

function quantum state

degenerate function product state

non-degenerate function entangled state

affine function stabiliser state

EQ3 GHZ state

ONE3 W state

holographic transformation stochastic local operation with classical
communication (SLOCC)

Holant problem (strong) classical simulation of quantum
circuits
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The dichotomy for HOLANT+

Theorem
Let F be a set functions, then HOLANT+ (F) = HOLANT (F ∪ {δ0, δ1, δ+, δ−})
is #P-hard unless F is in one of the following tractable families:

I unary and binary functions

F ⊆ 〈{f | arity(f ) = 1 or arity(f ) = 2}〉

I generalised equality functions: ∃M such that MT M ∈
{(

1 0
0 1

)
,
(

0 1
1 0

)}
and

F ⊆
〈
M ◦

{
f
∣∣ ∃a ∈ {0,1}arity(f ) s.t. ∀x /∈ {a, ā}, f (x) = 0

}〉
I generalised matching functions: ∃M such that MT M =

(
0 1
1 0

)
and

F ⊆ 〈M ◦ {f | f (x) = 0 unless |x| ≤ 1}〉

I affine functions
F ⊆ A.



Proof approach

There is a full dichotomy for HOLANT ({f} | {g}), where f is a symmetric
ternary function and g is a symmetric binary function

[Cai, Huang, Lu 2012]

To get a dichotomy for HOLANT+ (F):

I Assume F is not one of the tractable families

I Then there exists a fully entangled function in 〈F , δ0, δ1, δ+, δ−〉 which
has arity ≥ 3

I Find f ,g ∈ 〈F , δ0, δ1, δ+, δ−〉 with arity(f ) = 3 and arity(g) = 2, which
are symmetric and fully entangled

I Reduce from HOLANT ({f} | {g}) to show hardness
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Gadget constructions from quantum theory

Theorem (Popescu & Rohrlich, 1992; Gachechiladze & Gühne, 2017)
Let f be a fully entangled n-ary function. Then, for any two of the inputs,
there exists some fully entangled binary gadget over {f , δ0, δ1, δ+, δ−}.

f

u1 un−2
. . .

u2

Theorem
Let f be a fully entangled n-ary function with n ≥ 3. Then there exists a
fully entangled ternary gadget over {f , δ0, δ1, δ+, δ−} for some choice of
three of the inputs.

f

un−3
. . .

u1
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‘Virtual gadgets’
It can be convenient to think of functions as gadgets even if they are not
defined that way, e.g. for a fully entangled ternary function:

A B C where is assigned

{
EQ3 or
ONE3

Then (up to a holographic transformation) the following gadget is
determined by 2 cases with 4 parameters each:

A

B

C B

C

AA

C B
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Gadgets for symmetric entangled ternary functions

M

M

M

Given a set F containing a fully entangled ternary function, can show with
a bit of effort:

I either it is possible to realise a symmetric fully entangled ternary
function over F ∪ {δ0, δ1, δ+, δ−} using the above gadget (possibly with
some extra effort), or

I F ∪ {δ0, δ1, δ+, δ−} is one of the known tractable families



The dichotomy for HOLANTc

Theorem
Let F be a set of functions, then HOLANTc (F) := HOLANT (F ∪ {δ0, δ1}) is
#P-hard unless F is in one of the following tractable families:

I unary and binary functions

F ⊆ 〈{f | arity(f ) = 1 or arity(f ) = 2}〉

I generalised equality functions: ∃M such that MT M ∈
{(

1 0
0 1

)
,
(

0 1
1 0

)}
and

F ⊆
〈
M ◦

{
f
∣∣∃a ∈ {0,1}arity(f ) s.t. ∀x /∈ {a, ā}, f (x) = 0

}〉
I generalised matching functions: ∃M such that MT M =

(
0 1
1 0

)
and

F ⊆ 〈M ◦ {f | f (x) = 0 unless |x| ≤ 1}〉

I ‘transformable to affine’ functions: ∃M such that MT ◦ {EQ2, δ0, δ1} ⊆ A
and F ⊆ M ◦ A

I local affine functions.



Sketch of hardness proof

Combine methods from real-valued HOLANTc dichotomy [Cai, Lu, Xia 2017]
and HOLANT+ dichotomy [B 2017]

I Assume F is not one of the tractable families

I Pick a function f ∈ 〈F , δ0, δ1〉 with arity(f ) ≥ 3 which is fully entangled

I Use pinning and self-loops to reduce arity while preserving properties
of being fully entangled and having arity ≥ 3

I Either get ternary function, or get 4-ary function which is non-zero only
on inputs 0000, 0011, 1100, 1111 (up to permutation of arguments)

I With ternary function, can show hardness using techniques from
HOLANT+ dichotomy

I With 4-ary function, can reduce from #CSPc
2
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Summary and outlook

I Knowledge from quantum theory, particularly about entanglement, is
useful for analysing counting problems

I This approach has already led to dichotomies for HOLANT+ and
HOLANTc

I Hopefully stepping stone towards full dichotomy for all holant
problems, together with dichotomy for symmetric HOLANT [Cai, Guo,
Williams 2016] and dichotomy for non-negative real-valued HOLANT
[Lin, Wang 2017]

Thank you.
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