All SOMA(k,n)s with n<6

This page (posted 4 January 2001) records the results of my classification, up to isomorphism, of the SOMA(k,n)s with n<6. This classification was done using backtrack searches written in GAP and GRAPE. It is assumed the reader is familiar with the basic definitions concerning SOMAs.

Of course, for each n>1, there is just one SOMA(0,n). For 1<n<6 and k>0, we give below representatives of the distinct isomorphism classes of the SOMA(k,n)s. All but the last four such representatives (all of which are SOMA(2,5)s) are superpositions of mutually orthogonal Latin squares (with pairwise disjoint symbol sets). The list of GRAPE graphs corresponding to the SOMAs below is here.

First, we give the SOMA(k,n)s with k>0 and n<6 which are superpositions of MOLS:


1 2
2 1

1 2 3
3 1 2
2 3 1

1 4 2 5 3 6
3 5 1 6 2 4
2 6 3 4 1 5

1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 5 2 6 3 7 4 8
2 7 1 8 4 5 3 6
3 8 4 7 1 6 2 5
4 6 3 5 2 8 1 7

1 5 6 2 7 8 3 9 10 4 11 12
2 9 11 1 10 12 4 5 7 3 6 8
3 7 12 4 6 9 1 8 11 2 5 10
4 8 10 3 5 11 2 6 12 1 7 9

1 2 3 4 5
2 1 5 3 4
5 4 1 2 3
3 5 4 1 2
4 3 2 5 1

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

1 6 2 7 3 8 4 9 5 10
5 9 1 10 2 6 3 7 4 8
4 7 5 8 1 9 2 10 3 6
3 10 4 6 5 7 1 8 2 9
2 8 3 9 4 10 5 6 1 7

1 6 2 7 3 8 4 9 5 10
5 7 1 8 2 9 3 10 4 6
4 8 5 9 1 10 2 6 3 7
3 9 4 10 5 6 1 7 2 8
2 10 3 6 4 7 5 8 1 9

1 6 7 2 8 9 3 10 11 4 12 13 5 14 15
5 10 12 1 13 14 2 6 15 3 7 8 4 9 11
4 8 15 5 7 11 1 9 12 2 10 14 3 6 13
3 9 14 4 6 10 5 8 13 1 11 15 2 7 12
2 11 13 3 12 15 4 7 14 5 6 9 1 8 10

1 6 7 8 2 9 10 11 3 12 13 14 4 15 16 17 5 18 19 20
5 9 12 15 1 13 16 18 2 6 17 19 3 7 10 20 4 8 11 14
4 10 13 19 5 7 14 17 1 11 15 20 2 8 12 18 3 6 9 16
3 11 17 18 4 6 12 20 5 8 10 16 1 9 14 19 2 7 13 15
2 14 16 20 3 8 15 19 4 7 9 18 5 6 11 13 1 10 12 17

Next, the SOMA(k,n)s with k>0 and n<6 which are not superpositions of MOLS:


1 2 3 4 5 6 7 8 9 10
3 5 1 7 2 9 4 10 6 8
4 6 2 8 1 10 3 9 5 7
7 9 5 10 3 8 2 6 1 4
8 10 6 9 4 7 1 5 2 3

1 2 3 4 6 8 7 9 5 10
3 5 6 7 1 4 8 10 2 9
7 8 1 5 9 10 2 4 3 6
6 10 8 9 2 5 1 3 4 7
4 9 2 10 3 7 5 6 1 8

1 2 4 5 6 7 3 9 8 10
4 6 1 3 2 10 5 8 7 9
5 10 2 8 1 9 4 7 3 6
3 7 6 9 4 8 1 10 2 5
8 9 7 10 3 5 2 6 1 4

1 3 5 6 4 8 2 9 7 10
5 7 2 4 1 10 3 8 6 9
6 10 1 8 5 9 4 7 2 3
2 8 7 9 3 6 5 10 1 4
4 9 3 10 2 7 1 6 5 8


Back to SOMA Update


This page is authored and maintained by L.H.Soicher@qmul.ac.uk
Last revised 27 July 2012