
Software for proper vertex-colouring exploiting

graph symmetry ⋆

Leonard H. Soicher[0000−0001−5836−8914]

School of Mathematical Sciences
Queen Mary University of London

Mile End Road, London E1 4NS, UK
L.H.Soicher@qmul.ac.uk

Abstract. We describe the methods used in the GAP package GRAPE
for proper vertex-colouring a graph, including the determination of a
minimum vertex-colouring and hence the chromatic number. These meth-
ods are designed to exploit the automorphism group of the graph.

Keywords: proper vertex-colouring · minimum vertex-colouring · chro-
matic number · graph symmetry · GRAPE · GAP.

⋆ This version of the contribution has been accepted for publication, af-
ter peer review but is not the Version of Record and does not re�ect
post-acceptance improvements, or any corrections. The Version of Record
is available online at: https://doi.org/10.1007/978-3-031-64529-7_12. Use of
this Accepted Version is subject to the publisher's Accepted Manuscript
terms of use https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms.

2 L. H. Soicher

1 Introduction

The GAP system [2] is a freely available open-source computer system for algebra
and discrete mathematics, with an emphasis on computational group theory. See
[3] for a tutorial introduction to GAP.

The GRAPE package [12] for GAP provides extensive functionality for graphs,
and is designed primarily for applications in algebraic graph theory, permutation
group theory, design theory, and �nite geometry. See [13] for a tutorial introduc-
tion to GRAPE, including the use of much of the functionality described in this
article.

In GRAPE, a graph gamma always comes together with an associated group
gamma.group of automorphisms. This group is set (automatically or by the
user) when the graph is constructed, and is used by GRAPE to store the graph
compactly and to speed up computations with the graph. Often, but not always,
this group is the full automorphism group of the graph.

GRAPE includes functionality for constructing graphs, determining their reg-
ularity properties, and classifying their cliques. GRAPE also provides seamless
interfaces to both the nauty [11] and bliss [7] computer packages for computing
the automorphism group of a graph and testing graph isomorphism.

GRAPE now also has machinery for properly vertex-colouring a graph, which
exploits the automorphism group of that graph. This functionality includes the
calculation of a minimum vertex-colouring and hence the determination of the
chromatic number of the graph. We shall describe the main ideas and meth-
ods used for this functionality. We expect these to be of broader interest and
application.

Our proper vertex-colouring software in GRAPE is meant to be of practical
use, especially for graphs with large automorphism groups. This software was
used to compute many of the chromatic numbers given in [1, Chapter 10] for
speci�c interesting strongly regular graphs. We present two further examples in
the last section.

Throughout this article, all graphs are simple, meaning they are �nite, undi-
rected, and have no loops and no multiple edges.

2 Proper vertex-colouring and cliques

Let Γ be a graph. A proper vertex-colouring of Γ is a labelling of its vertices
by elements from a set of colours, such that adjacent vertices are labelled with
di�erent colours. Where k is a non-negative integer, a vertex k-colouring of Γ is a
proper vertex-colouring using at most k colours. A minimum vertex-colouring of
Γ is a vertex k-colouring with k as small as possible, and the chromatic number

χ(Γ) of Γ is the number of colours used in a minimum vertex-colouring of Γ .
The problem of whether a given graph has a vertex k-colouring for a given k

is a well-known NP-complete problem. Indeed, the problem is still NP-complete
even for �xed k = 3 [4, Chapter 8]. Moreover, the problem of determining
whether a graph has a vertex k-colouring for a given k appears to be very

Software for proper vertex-colouring exploiting graph symmetry 3

di�cult in practice. As users of GRAPE are usually interested in graphs with
non-trivial, and often large, automorphism groups, it is important to be able to
exploit any symmetry a graph may have when determining a vertex k-colouring
for a given k or showing that no such vertex-colouring exists.

A clique of Γ is a set of pairwise adjacent vertices. Where t is a non-negative
integer, a t-clique is a clique of size t. A maximal clique of Γ is a clique which
is contained in no larger clique, while a maximum clique of Γ is a t-clique with
t as large as possible. The clique number ω(Γ) of Γ is the number of vertices in
a maximum clique of Γ . Clearly, ω(Γ) ≤ χ(Γ).

The problem of whether a given graph has a t-clique for a given t is a well-
known NP-complete problem [4, Chapter 8]. However, this problem appears to
be less di�cult in practice than determining whether the graph has a vertex
k-colouring for a given k. GRAPE contains powerful machinery for clique classi-
�cation and for the determination of a maximum clique.

Now note that, up to the naming of the colours, the vertex k-colourings of
Γ are in one-to-one correspondence with the partitions of the vertex set of the
complement Γ̄ of Γ into at most k cliques of Γ̄ (the parts in such a partition
are the colour classes of a vertex k-colouring of Γ). Also note that if g is an
automorphism of Γ (and hence of Γ̄) and C is an ordered partition of V (Γ̄) into
m cliques, then the g-image of C is also an ordered partition of V (Γ̄) into m
cliques.

The �rst step in GRAPE to try to �nd a vertex k-colouring of Γ is to perform a
relatively inexpensive heuristic proper vertex-colouring (see [9]), but if this does
not result in a vertex k-colouring, then a backtrack search is performed to �nd
the �least� (de�ned later) ordered partition (C1, C2, . . . , Cm) of the vertices of Γ̄
into cliques, such that m ≤ k. This search will either �nd a vertex k-colouring
of Γ or prove that such a colouring does not exist.

The method used at present in GRAPE for the determination of a minimum
vertex-colouring of Γ (and hence χ(Γ)) is a binary search for the least k for
which a vertex k-colouring of Γ exists, together with the determination of a
vertex k-colouring for this least k. To start with, a lower bound for k can be
taken to be ω(Γ) or ⌈|V (Γ)|/ω(Γ̄)⌉ and an upper bound for k can be obtained
by a proper vertex-colouring heuristic, many of which are described in [9], the
simplest of which is �greedy colouring�.

In the GRAPE package for GAP, the user functions for proper vertex-colouring
are VertexColouring (for vertex k-colouring), MinimumVertexColouring, and
ChromaticNumber. In GRAPE, a proper vertex-colouring of a graph is output as
a sequence of positive integers indexed by the vertices of the graph, with the i-th
element of the sequence being the colour of vertex i.

3 The main tools

We now describe the three main tools from GRAPE that we use in our vertex
k-colouring algorithm.

4 L. H. Soicher

The �rst tool is used to classify the maximal cliques of given size in a graph,
up to the action of a given group of automorphisms of that graph. In GRAPE,
where gamma is a (simple) graph and t is a non-negative integer, the function
call

CompleteSubgraphsOfGivenSize(gamma, t, 2, true)

returns a set of gamma.group orbit-representatives of all the maximal cliques
of size t in gamma.

The second tool is Steve Linton's function SmallestImageSet, which is in-
cluded in GRAPE. Where G is a permutation group on X := {1, . . . , n} and S is
a subset of X, the function call

SmallestImageSet(G, S)

returns the lexicographically least set in the G-orbit of S with respect to the
natural action of G on subsets of X, without explicitly computing this (possibly
huge) orbit. We use the SmallestImageSet function to determine the lexico-
graphically least clique in a group orbit, given an arbitrary clique in that orbit.

The algorithm for SmallestImageSet is given in [10]. Further developments
in the computation of minimal and canonical images with respect to a group
action are given in [5, 6].

Our third tool again employs CompleteSubgraphsOfGivenSize, this time for
the calculation of exact set covers, exploiting symmetry, as detailed in Figure 1.
See the GRAPE manual [12] for full documentation of the very �exible function
CompleteSubgraphsOfGivenSize, as well as other GRAPE functions used.

4 A total ordering of �nite sequences of subsets of

{1, . . . , n}

Let n be a non-negative integer, and let A := {a1, . . . , ar} and B := {b1, . . . , bs}
be subsets of {1, . . . , n}, with a1 < · · · < ar and b1 < · · · < bs. We de�ne

A ⪯ B

to mean either r > s, or r = s and (a1, . . . , ar) ≤ (b1, . . . , br) in lexicographic
order (w.r.t. the usual ≤ on the integers). For example, {3, 5, 6} ⪯ {2, 3}, but
{3, 4, 7} ⪯ {3, 5, 6}.

Let n be a non-negative integer and letA := (A1, . . . , At) and B := (B1, . . . , Bu)
be �nite sequences of subsets of {1, . . . , n}. We de�ne

A ⪯ B

to mean that (A1, . . . , At) is less than or equal to (B1, . . . , Bu) in lexicographic
order, with respect to the order ⪯ on subsets of {1, . . . , n}. For example,

({3, 4, 7}, {3, 5, 6}, {7, 8}) ⪯ ({3, 4, 7}, {2, 3}) ⪯ ({3, 4, 7}, {2, 3}, {1, 2, 3, 4}).

Software for proper vertex-colouring exploiting graph symmetry 5

ExactSetCover := function(G,blocks,n)

#

Let n be a positive integer, let G be a permutation group on

[1..n], let blocks be a set of non-empty subsets of [1..n],

and suppose S is the union of the G-orbits of the sets in blocks.

Then this function returns an exact set cover of [1..n] by elements

from S, if such a cover exists, and returns `fail' otherwise.

#

local gamma,i,j,wts,K;

gamma:=Graph(G,blocks,OnSets,

function(x,y) return Intersection(x,y)=[]; end);

wts:=[];

for i in [1..OrderGraph(gamma)] do

wts[i]:=ListWithIdenticalEntries(n,0);

for j in VertexName(gamma,i) do

wts[i][j]:=1;

od;

od;

K:=CompleteSubgraphsOfGivenSize(gamma,

ListWithIdenticalEntries(n,1),0,true,true,wts);

if K=[] then

return fail;

else

return Set(VertexNames(gamma){K[1]});

fi;

end;

Fig. 1. Exact set cover using GRAPE

5 The backtrack search

Now let Γ be a graph with non-empty vertex set V (Γ) := {1, . . . , n}, and let ∆
be the complement graph Γ̄ of Γ , such that the vertices of ∆ can be partitioned
into at most k cliques of ∆, for a given positive integer k (that is, Γ has a vertex
k-colouring). Then there is a unique least ordered such partition (C1, . . . , Cm)
with respect to ⪯, and we shall consider some properties of this least ordered
partition. These properties give us very useful constraints on partial solutions
for our backtrack search, which either proves that this least ordered partition
does not exist or �nds a vertex k-colouring of Γ (which need not correspond to
(C1, . . . , Cm)).

We follow the general structure of backtrack search as described in [8, Sec-
tion 4.1.2]. Full details of our backtrack search can be found in the open-source
code of GRAPE [12]. The degree of di�culty for this backtrack search depends
heavily on k and the clique structure of ∆.

6 L. H. Soicher

5.1 Constraints on partial solutions

Let (C1, . . . , Cm) be the least ordered partition of V (∆) into cliques of ∆, with
respect to ⪯, such that m ≤ k. Let ∆1 := ∆, let G1 := Aut(∆), and for
i = 2, . . . ,m, let ∆i be the subgraph of ∆i−1 induced on V (∆i−1) \ Ci−1 and
let Gi be the image of the action on V (∆i) of the (setwise) stabilizer in Gi−1 of
Ci−1 (Gi is the group we associate to ∆i in GRAPE). Then it is easy to see that
the following must hold:

� Ci is a maximal clique of ∆i.

� Ci is the lexicographically least set in its Gi-orbit.

� If i > 1 then Ci−1 ≺ Ci.

� (k − i+ 1)|Ci| ≥ |V (∆i)|.

Given (C1, . . . , Ci−1), with 1 ≤ i ≤ m, the possible Ci satisfying these prop-
erties can be generated (in increasing order w.r.t. ⪯) making use of the functions
CompleteSubgraphsOfGivenSize and SmallestImageSet. Of course, if we are
given (C1, . . . , Cm) then we return this solution and stop.

We now note the following useful result.

Lemma 1. Let 1 ≤ j < i ≤ m, let D be a clique of ∆j containing Ci and let

g ∈ Gj. Then Cj ⪯ Dg, the image of D under g.

Proof. SupposeDg ≺ Cj . Then we could make an ordered partition (D1, . . . , Dm)
of V (∆) into cliques, such that (D1, . . . , Dm) ≺ (C1, . . . , Cm), as follows. For
1 ≤ ℓ ≤ j − 1, Dℓ := Cℓ; Dj := Dg; Di := (Cj \D)g; for j + 1 ≤ ℓ ≤ m, ℓ ̸= i,
Dℓ := (Cℓ \D)g. ⊓⊔

Now, for 1 ≤ j < i ≤ m, let Ci,j be the largest clique that can be obtained
by adding (zero or more) elements of Cj to Ci. Then, applying Lemma 1, we
obtain the following further constraints that we apply on partial solutions in our
backtrack search.

� If i > 1 then the least Gi−1-image of Ci,i−1 is ⪰ Ci−1.

� Suppose (k − i+ 1)|Ci| = |V (∆i)|. Then m = k and {Ci, Ci+1, . . . , Ck} is a
partition of V (∆i) into maximal cliques of ∆i, each of size |Ci|.
Now additionally suppose that Gi is small, say Gi has order at most 24 (so
that Gi-orbits of cliques are also small). Then, after we classify the maxi-
mal cliques of size |Ci| in ∆i, up to the action of Gi, we determine which
Gi-orbits of these cliques could possibly contain elements of {Ci, . . . , Ck}.
We use the requirement that if i > 1, then for ℓ = i, . . . , k, the least Gi−1

image of Cℓ,i−1 is ⪰ Ci−1 (note that this requirement need only be checked
for one representative from each Gi-orbit). We then make use of (an inline
version of) the function ExactSetCover either to complete the partial solu-
tion (C1, . . . , Ci−1) to an ordered partition of V (∆) into k cliques or to show
that no least (w.r.t. ⪯) such completion exists.

Software for proper vertex-colouring exploiting graph symmetry 7

6 Examples

In the example given in Figure 2, we load the GRAPE package (suppressing the
banner), construct the M23-graph on 253 vertices (see [1, Section 10.56]), and
determine some of its properties. In particular, we show that this graph has
chromatic number 15, a fact which appears to have been previously unknown.
The whole calculation took about 15 minutes of CPU-time on an i5 laptop, with
the calculation of the chromatic number taking almost all of the time.

gap> LoadPackage("grape",false);

true

gap> G:=PrimitiveGroup(253,5);

M(23)

gap> M23graph:=First(GeneralizedOrbitalGraphs(G,1),

> x->VertexDegrees(x)=[112]);;

gap> GlobalParameters(M23graph);

[[0, 0, 112], [1, 36, 75], [60, 52, 0]]

gap> A:=AutomorphismGroup(M23graph);;

gap> Size(A);

10200960

gap> RankAction(A,[1..253]);

3

gap> CliqueNumber(M23graph);

4

gap> CliqueNumber(ComplementGraph(M23graph));

21

gap> ChromaticNumber(M23graph);

15

Fig. 2. Example calculation

Similarly, we have constructed the M22-graph on 176 vertices (see [1, Sec-
tion 10.51]), and have determined that this graph has chromatic number 12,
which also appears to have been previously unknown. This calculation took
about one-half minute of CPU-time on an i5 laptop.

References

1. Brouwer, A. E., Van Maldeghem, H.: Strongly Regular Graphs. Cambridge Uni-
versity Press, Cambridge (2022)

2. The GAP Group: GAP � Groups, Algorithms, and Programming. Version 4.13.0
(2024). https://www.gap-system.org

3. The GAP Group: GAP � A Tutorial. Release 4.13.0 (2024). https://www.gap-
system.org/Manuals/doc/tut/manual.pdf

4. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge
(1985)

8 L. H. Soicher

5. Je�erson, C., Jonauskyte, E., Pfei�er, M., Waldecker, R.: Minimal and canonical
images. Journal of Algebra 521, 481�506 (2019)

6. Je�erson, C., Pfei�er, M., Waldecker, R., Jonauskyte, E.: The images pack-
age for GAP, minimal and canonical images. Version 1.3.2 (2024). https://gap-
packages.github.io/images/

7. Junttila, T., Kaski, P.: Engineering an e�cient canonical labeling tool for large and
sparse graphs. In: Applegate, D. et al. (eds.) Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithmics and Combinatorics, pp. 135�149. SIAM, Philadelphia (2007). bliss
homepage: http://www.tcs.hut.�/Software/bliss/

8. Kaski, P., Östergård, P. R. J.: Classi�cation Algorithms for Codes and Designs.
Springer, Berlin (2006)

9. Lewis, R. M. R.: A Guide to Graph Colouring: Algorithms and Applications. 2nd
edn. Springer International Publishing, Switzerland (2021)

10. Linton, S.: Finding the smallest image of a set. In: J. Gutierrez (ed.) ISSAC '04:
Proceedings of the 2004 International Symposium on Symbolic and Algebraic Com-
putation, pp. 229�234. ACM Press, New York (2004)

11. McKay, B. D., Piperno, A.: Practical graph isomorphism, II. Journal of
Symbolic Computation 60, 94�112 (2014). nauty and Traces homepage:
https://pallini.di.uniroma1.it

12. Soicher, L. H.: The GRAPE package for GAP. Version 4.9.0 (2022). https://gap-
packages.github.io/grape/

13. Soicher, L. H.: Using GAP packages for research in graph theory, design theory,
and �nite geometry. In: Ivanov, A. A. (ed.) Algebraic Combinatorics and the Mon-
ster Group, London Mathematical Society Lecture Note Series 487, pp. 527�566.
Cambridge University Press, Cambridge (2024)

