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Abstract

Let Γ be an edge-regular graph with given parameters (v, k, λ). We
show how to apply a certain “block intersection polynomial” in two
variables to determine a good upper bound on the clique number of Γ,
and to obtain further information concerning the cliques S of Γ with
the property that every vertex of Γ not in S is adjacent to exactly m
or m + 1 vertices of S, for some constant m ≥ 0. Some interesting
examples are studied using computation with groups and graphs.
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1 Introduction

In this paper we present new results concerning the cliques in an edge-regular
graph Γ with given parameters. We show how to apply a certain “block
intersection polynomial” [5, 12] to determine a good upper bound on the
clique number of Γ, and to obtain information on the cliques S of Γ with the
property that every vertex of Γ not in S is adjacent to exactly m or m + 1
vertices of S, for some constant m ≥ 0.

Every orbital graph for a finite transitive permutation group is edge-regular,
and we study some informative examples of orbital graphs using the per-
mutation group functionality in GAP [8], to which Ákos Seress was a major
contributor, together with the GAP package GRAPE [13] for computing with
graphs with groups acting on them.

2 Definitions and background

All graphs in this paper are finite and undirected, with no loops and no
multiple edges. A graph Γ is edge-regular with parameters (v, k, λ) if Γ has
exactly v vertices, is regular of valency k, and every pair of adjacent vertices
have exactly λ common neighbours. An orbital graph for a transitive permu-
tation group G on a finite set Ω is a graph with vertex set Ω and edge set the
G-orbit of some unordered pair {α, β} of distinct vertices, such that α and β
are interchanged by some element of G. Such orbital graphs are edge-regular,
and provide us with interesting examples. A graph Γ is strongly regular with
parameters (v, k, λ, µ) if Γ is edge-regular with parameters (v, k, λ), and ev-
ery pair of distinct nonadjacent vertices have exactly µ common neighbours.
A clique in a graph Γ is a set of pairwise adjacent vertices, an s-clique is a
clique of size s, and a maximum clique of Γ is a clique of the largest size in
Γ. The size of a maximum clique in Γ, its clique number, is denoted by ω(Γ).
The set of vertices adjacent to a vertex v in a graph Γ is denoted by Γ(v).

For n ≥ k > 0, the Kneser graph K(n, k) has as vertices the k-subsets of
{1, . . . , n}, with two vertices adjacent precisely when they are disjoint. For
example, K(5, 2) is the Petersen graph. Observe that K(n, k) is edge-regular,
with parameters

((
n
k

)
,
(

n−k
k

)
,
(

n−2k
k

))
.

A regular clique, or more specifically, an m-regular clique in a graph Γ is
a clique S such that every vertex of Γ not in S is adjacent to exactly m
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vertices of S, for some constant m > 0. For example, if n ≥ 3, then each
maximum clique of K(2n, 2) is (n − 2)-regular. A quasiregular clique, or
more specifically, an m-quasiregular clique in a graph Γ is a clique S of size
at least 2, such that every vertex of Γ not in S is adjacent to exactly m or
m+1 vertices of S, for some constant m ≥ 0. For example, if n ≥ 3, then each
maximum clique of K(2n− 1, 2) is (n− 3)-quasiregular, and each maximum
clique of K(3n, 3) is (n − 3)-quasiregular. Note that a clique S of size at
least 2 in a graph is m-regular precisely when S is both (m− 1)-quasiregular
and m-quasiregular.

Suppose that Γ is a strongly regular graph of valency k > 0 and having least
eigenvalue σ (the eigenvalues of (the adjacency matrix of) Γ are determined
by its parameters). In his famous thesis, Delsarte [6] proved that

ω(Γ) ≤ b1− k/σc. (1)

Moreover, if Γ is connected and not complete, then a clique S of Γ is regular
if and only if |S| = 1− k/σ (see [4, Proposition 1.3.2(ii)]).

Delsarte’s bound (1) was later generalised by A.J. Hoffman in a way that
applies to regular graphs in general, but as in [9], we shall refer to the bound
as the Delsarte bound when applied to strongly regular graphs. In the last
section of this paper, we shall discuss an upper bound, proposed in [12], on
the clique number of an edge-regular graph with given parameters (v, k, λ),
which is sometimes strictly better than Delsarte’s bound for a strongly regular
graph with parameters (v, k, λ, µ) (when such parameters are “feasible” [3]).

In 1981, Neumaier [10] studied regular cliques in edge-regular graphs and
proved the following (amongst other results):

Theorem 2.1. Suppose Γ is a non-complete edge-regular graph having an
m-regular s-clique. Then:

1. ω(Γ) = s;

2. all regular cliques in Γ are m-regular cliques;

3. the regular cliques in Γ are precisely the cliques of size s.

Neumaier pointed out that this result does not hold in general for regular
graphs, but also that it is unknown whether an edge-regular graph which is
not strongly regular can have a regular clique. Indeed, Neumaier [10] showed
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that if a vertex- and edge-transitive graph (such as an orbital graph) contains
a regular clique then that graph must be strongly regular.

We shall study the situation of quasiregular cliques in edge-regular graphs,
and in particular, generalise Neumaier’s result above to apply to quasiregular
cliques. This generalisation appears to be natural for edge-regular graphs
that are not necessarily strongly regular, but does not hold for regular graphs
in general.

3 The clique adjacency polynomial

We now describe our main tool.

The clique adjacency polynomial of an edge-regular graph Γ with parameters
(v, k, λ) is:

CΓ(x, y) = Cv,k,λ(x, y) := x(x+1)(v−y)−2xy(k−y+1)+y(y−1)(λ−y+2).

This is a special case of a block intersection polynomial [5, 12], and we shall
be applying the following result, which follows from Theorem 3.2 of [5] and
Theorem 1.1 of [12].

Theorem 3.1. Let Γ be an edge-regular graph with parameters (v, k, λ), and
suppose Γ has an s-clique S, with s ≥ 2. Then:

1. CΓ(x, s) =
∑s

i=0(i− x)(i− x− 1)ni, where ni is the number of vertices
of Γ not in S adjacent to exactly i vertices in S;

2. CΓ(m, s) ≥ 0 for every integer m;

3. if m is a non-negative integer then CΓ(m, s) = 0 if and only if S is m-
quasiregular, in which case the number of vertices outside S adjacent
to exactly m vertices in S is CΓ(m + 1, s)/2;

4. if m is a positive integer then CΓ(m− 1, s) = CΓ(m, s) = 0 if and only
if S is m-regular.

For example, let Γ be the orbital graph of valency 240 for the primitive action
of the Mathieu group M24 of degree 1771. Then Γ is an edge-regular (but
not strongly regular) graph with parameters (1771, 240, 38) (see [11]), and

CΓ(x, y) = −y3 + 2y2x + 41y2 − yx2 − 483yx− 40y + 1771x2 + 1771x.
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We find that CΓ(2, 21) = 0 and CΓ(3, 21)/2 = 630. Thus each 21-clique S of
Γ is 2-quasiregular, with just 630 vertices of Γ outside S adjacent to exactly
2 vertices of S. We used the primitive groups library in GAP and the GRAPE
package to construct Γ and to determine that Γ does indeed have a 21-clique.

4 (s− 1)-quasiregular s-cliques

We now consider the edge-regular graphs having an m-quasiregular s-clique
with m = s or m = s− 1.

Let Γ be an edge-regular graph with at least one edge. Neumaier [10] proved
that Γ has an s-regular s-clique if and only if Γ is a complete graph, and Γ
has an (s−1)-regular s-clique if and only if Γ is a complete multipartite graph
with exactly s parts, all of the same size. Now an s-quasiregular s-clique is
s-regular, so it remains to examine the case of an edge-regular graph having
an (s− 1)-quasiregular s-clique. We have the following:

Theorem 4.1. Let Γ be an edge-regular graph with parameters (v, k, λ), with
k > 0. The following are equivalent:

1. Γ is complete multipartite;

2. v = 2k − λ;

3. every s-clique of Γ with s ≥ 2 is (s− 1)-quasiregular;

4. some s-clique of Γ with s ≥ 2 is (s− 1)-quasiregular.

Proof. (1 =⇒ 2) Straightforward.

(2 =⇒ 3) An easy direct calculation shows that C2k−λ,k,λ(s − 1, s) = 0 for
all real numbers s. Hence, by Theorem 3.1, part 3, every s-clique of Γ with
s ≥ 2 is (s− 1)-quasiregular.

(3 =⇒ 4) Trivial.

(4 =⇒ 1) For this we use an argument similar to that used by Neumaier
to prove that if Γ has an (s − 1)-regular s-clique then Γ must be complete
multipartite.

Suppose s ≥ 2 and that Γ has an (s−1)-quasiregular s-clique S. Then every
vertex not in S is nonadjacent to at most one vertex in S. Thus, if x and
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y are distinct vertices of S then {x, y} is an edge of Γ with the property
that every vertex z is adjacent to at least one of x and y. In particular,
{x, y} is a 1-quasiregular clique, so CΓ(1, 2) = 0 and so every edge of Γ is
1-quasiregular. Now define a relation ≡ on the vertex-set of Γ by v ≡ w if
and only if v = w or v and w are not adjacent. This relation is obviously
reflexive and symmetric, and it is also transitive for if v ≡ x and x ≡ w,
then we cannot have {v, w} being an edge, since x = v or x = w or x is non-
adjacent to both v and w. Thus ≡ is an equivalence relation, which shows
that Γ is complete multipartite, the parts being the equivalence classes of ≡
(and since Γ is regular of valency k, each part must have size v − k).

5 Quasiregular cliques in edge-regular graphs

that are not complete multipartite

We now generalise Theorem 2.1 of Neumaier.

Theorem 5.1. Suppose Γ is an edge-regular graph, not complete multipartite,
which has an m-quasiregular s-clique. Then for all edge-regular graphs ∆ with
the same parameters (v, k, λ) as Γ:

1. ω(∆) ≤ s, so in particular, ω(Γ) = s;

2. all quasiregular cliques in ∆ are m-quasiregular cliques;

3. the quasiregular cliques in ∆ are precisely the cliques of size s (although
∆ may have no cliques of size s).

Proof. Let ∆ be an edge-regular graph with parameters (v, k, λ), and let
C(x, y) = Cv,k,λ(x, y). Then C(x, y) = CΓ(x, y) = C∆(x, y). By Theorem 3.1,
part 3, since Γ has an m-quasiregular s-clique, C(m, s) = 0, so every s-clique
of ∆ is m-quasiregular.

Now suppose ∆ has a clique L of size greater than s, and let K be a subset
of L of size s. Then K is an s-clique of ∆, and so m-quasiregular, so every
vertex outside K is adjacent to m or m + 1 vertices in K. However, this
contradicts the fact that there is a vertex in L \K adjacent to all s vertices
of K, since by Theorem 4.1, m + 1 < s since Γ is not complete multipartite.
Hence ω(∆) ≤ s. This proves part 1.
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By part 1, each quasiregular clique of Γ is a maximum clique, which has size
s. Thus, if t is an integer with 2 ≤ t ≤ s and n is a non-negative integer,
then C(n, t) = 0 only if t = s, which shows that each quasiregular clique in
∆ must have size s, and we have already pointed out that each s-clique in ∆
is m-quasiregular. This completes the proof of parts 2 and 3.

We remark that this result does not hold if in the definition of an m-
quasiregular clique “m or m + 1” is replaced by “m or m + 2”. For example,
consider the complement ∆ of K(5, 2). Now ∆ is strongly regular, with pa-
rameters (10, 6, 3, 4), has a (maximal) 3-clique K = {{1, 2}, {1, 3}, {2, 3}},
such that every vertex not in K is adjacent to exactly 0 or 2 vertices in K,
but ∆ also has a (non-maximal) 3-clique L = {{1, 2}, {1, 3}, {1, 4}}, such
that every vertex not in L is adjacent to exactly 1, 2 or 3 vertices in L.

Furthermore, there are regular, but not edge-regular graphs having non-
maximum quasiregular cliques. For example, consider the edge-union of the
orbital graphs of valencies 5 and 10 for the primitive action of PΓL(2, 9) on
36 points. This is a regular, but not edge-regular, graph of valency 15, with
clique number 6, but it has a 1-quasiregular maximal (but not maximum)
4-clique.

6 On spreads of regular cliques in edge-regular

graphs

A spread in a graph is set of cliques forming a partition of the vertex set.

Theorem 6.1. Let Γ be an edge-regular graph with parameters (v, k, λ). Sup-
pose Σ is a spread of m-regular s-cliques of Γ, with s ≥ 2, and let ∆ be the
graph obtained from Γ by removing the edges (but not the vertices) in the
cliques in Σ. Then:

1. ∆ is edge-regular, with parameters (v, k − s + 1, λ− 2m + 2);

2. each s-clique of ∆ is (m − 1)-quasiregular (although ∆ may not have
an s-clique);

3. if C∆(m− 1, s) 6= 0 then ω(∆) < s;
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4. each s-clique of ∆ is (m− 1)-regular if and only if m ≥ 2 and C∆(m−
2, s) = 0.

Proof. Let v be a vertex of Γ, and let v∗ denote the set of vertices of Γ,
other than v, contained in the unique clique in Σ containing v. Then, in ∆,
∆(v) = Γ(v) \ v∗, and since v∗ ⊆ Γ(v), we have that

|∆(v)| = |Γ(v)| − |v∗| = k − (s− 1).

Now suppose {v, w} is an edge of ∆. Then v and w are in different parts of the
spread Σ of m-regular cliques of Γ, and so |Γ(v)∩Γ(w)∩ v∗| = |Γ(w)∩ v∗| =
m− 1. Similarly, |Γ(v) ∩ Γ(w) ∩ w∗| = m− 1. Now v∗ amd w∗ are disjoint,
and we conclude that

|∆(v) ∩∆(w)| = |(Γ(v) ∩ Γ(w)) \ (v∗ ∪ w∗)| = λ− 2(m− 1).

Hence ∆ is edge-regular, with parameters (v, k − s + 1, λ− 2m + 2).

Suppose that S is an s-clique of ∆, let v be a vertex of ∆ not in S, and let
T = Γ(v) ∩ S. Then |T | = m. Now suppose there are two distinct vertices
a, b ∈ T , but a, b 6∈ ∆(v). Then {v, a, b} is contained in the clique in Σ
containing v, and so {a, b} cannot be an edge of ∆, contradicting the fact
that a and b are distinct vertices in S. Hence |∆(v) ∩ S| ∈ {m− 1, m}, so S
is an (m− 1)-quasiregular clique of ∆.

Suppose ∆ has an s-clique S. Then S is (m − 1)-quasiregular, and so by
Theorem 3.1, part 3, C∆(m − 1, s) = 0. Hence, if C∆(m − 1, s) 6= 0 then
ω(∆) < s.

Finally, an (m−1)-quasiregular s-clique of ∆ is (m−1)-regular if and only if
the clique is also (m− 2)-quasiregular, which is the case if and only if m ≥ 2
and C∆(m− 2, s) = 0.

This result is inspired by Haemers and Tonchev [9], who studied the existence
and properties of spreads of regular cliques in strongly regular graphs. Many
of these come from spreads of lines in partial geometries. A partial geometry
is a 1-(v, k, r) design (with k, r > 1), whose blocks are called lines, such that
every pair of distinct lines intersect in at most one point and for every line
L and every point p not on L, there are exactly α lines containing p and
intersecting L in a point, for some positive constant α. The point graph of
a 1-design has the points of the design as vertices, with two distinct points
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joined by an edge precisely when they are on a common block. The study
of partial geometries was initiated by Bose [2], where amongst much else he
showed that the point graph Γ of a partial geometry G is strongly regular.
Such a point graph has a regular clique (consisting of the points on a line in
G), and if G has a spread of lines (that is, a set of lines forming a partition of
the point set), then this spread does not contain all the lines in G, and each
line not in the spread meets each line in the spread in at most one point.
Hence, by Theorem 6.1, the point graph ∆ of the 1-design H obtained from
G by removing a spread of lines is edge-regular and contains quasiregular
cliques. Furthermore, we believe that H should have very good statistical
efficiency properties (see [1]).

We remark that a strongly regular graph Γ may have regular cliques, but no
spread consisting of such cliques (for example, when Γ is the complement of
K(2n, 2) with n > 2), and even if it does have such a spread, the removal of
the edges in the cliques of this spread may result in a graph having a smaller
clique number (for example, when Γ is the complement of K(4, 2)).

7 On bounding the clique number of an edge-

regular graph

Part 2 of Theorem 3.1 was applied in [12] to bound the clique number of
an edge-regular graph Γ with given parameters (v, k, λ). Let C(x, y) =
Cv,k,λ(x, y), and let b = bv,k,λ be the least positive integer such that C(m, b+
1) < 0 for some integer m. As pointed out in [12], such a b always exists,
since as a polynomial in y, C(x, y) has leading term −y3, and this b is easy
to determine, since for each n = 2, 3, . . . , v − 1, C(x, n) is a quadratic poly-
nomial in x, and we can easily check whether there is some integer m with
C(m, n) < 0.

We know of no case of a strongly regular graph with parameters (v, k, λ, µ)
where the bound b = bv,k,λ is worse than the Delsarte bound, and some cases
where the bound b is strictly better (see also [12]). Somewhat trivially, since
C(0, n) = n(n − 1)(λ − n + 2), we have b ≤ λ + 2, but such an inequality
does not always hold for the Delsarte bound.

Less trivially, the parameters with smallest v for which the existence of a
strongly regular graph is unknown are (v, k, λ, µ) = (65, 32, 15, 16) (see [3]).
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A strongly regular graph with these parameters would have least eigenvalue
(−1 −

√
65)/2, and the Delsarte bound would be 8 = b1 + 64/(1 +

√
65)c.

However, we calculate that b65,32,15 = 7, and so any edge-regular graph ∆
with parameters (65, 32, 15) has ω(∆) ≤ 7. Perhaps it would be fruitful
to search for a strongly regular graph with parameters (65, 32, 15, 16) and
containing a clique of size 7.

As a further example, we consider the strongly regular graphs with parame-
ters (144, 39, 6, 12). There exists such a graph, which is an orbital graph for
the primitive action of the simple group PSL(3, 3) on 144 points (see [7]). We
used the primitive groups library in GAP and the GRAPE package to construct
this graph and to determine that it has a maximum clique of size 4. Now any
strongly regular graph with parameters (144, 39, 6, 12) has least eigenvalue
−9, and so the Delsarte bound is 5 = b16/3c. However, C144,39,6(1, 5) = −12,
and so any edge-regular graph ∆ with parameters (144, 39, 6) has ω(∆) ≤ 4,
and as we have seen, equality in this bound can be achieved.
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