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Abstract

Let n and k be integers, with n > 1 and k > 0. An (n × n)/k
semi-Latin square S is an n × n array, whose entries (called blocks)
are k-element subsets of a set of size nk, the set of symbols of S,
such that each symbol of S occurs exactly once in each row and ex-
actly once in each column of S. Semi-Latin squares form a class of
designs generalising Latin squares, and have applications in areas in-
cluding the design of agricultural experiments, consumer testing, and
via their duals, human-machine interaction. In the present paper, new
theoretical and computational methods are developed to determine
optimal or efficient (n × n)/k semi-Latin squares for values of n and
k for which such semi-Latin squares were previously unknown. The
concept of subsquares of uniform semi-Latin squares is studied, new
applications of the DESIGN package for GAP are developed, and exact
algebraic computational techniques for comparing efficiency measures
of equireplicate block designs are presented. Applications include the
complete enumeration of the (4× 4)/k semi-Latin squares for k ≤ 10,
and the determination of those that are A-, D- and E-optimal, the
construction of efficient (6 × 6)/k semi-Latin squares for k = 4, 5, 6,
and counterexamples to a long-standing conjecture of R.A. Bailey and
to a similar conjecture of D. Bedford and R.M. Whitaker.

[Keywords: Semi-Latin square; Design optimality; Mutually or-
thogonal Latin squares; Block design; Block design efficiency mea-
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sures; Construction and enumeration of combinatorial designs; DE-
SIGN package for GAP; Algebraic computation]

1 Introduction

Let n and k be integers, with n > 1 and k > 0. An (n × n)/k semi-Latin
square S is an n×n array, whose entries (called blocks) are k-element subsets
of a set of size nk, the set of symbols of S, such that each symbol of S occurs
exactly once in each row and exactly once in each column of S. By identifying
a 1-element subset of the symbols with the symbol it contains, we consider an
(n× n)/1 semi-Latin square to be the same thing as a Latin square of order
n. We consider two (n×n)/k semi-Latin squares to be isomorphic if one can
be obtained from the other by applying one or more of: a row permutation,
a column permutation, transposing, and renaming symbols. The underlying
block design ∆(S) of a semi-Latin square S is obtained by ignoring the row
and column structure of S, so ∆(S) is a block design whose treatments are the
symbols of S and whose blocks are the blocks of S (including any repeats).
The dual S∗ of an (n× n)/k semi-Latin square S is the block design whose
n2 treatments are the ordered pairs (i, j), with i, j ∈ {1, . . . , n}, and whose
nk blocks correspond to the symbols of S, with the block corresponding to
a symbol α consisting precisely of the ordered pairs (i, j) such that α is in
the (i, j)-entry of S (see Bailey (2011)). Note that, up to the naming of its
symbols, a semi-Latin square S can be recovered from its dual S∗.

For example, here is a (3×3)/2 semi-Latin square with symbol-set {1, . . . , 6}:

1 4 2 5 3 6
3 5 1 6 2 4
2 6 3 4 1 5

, (1)

and the blocks of its dual are:

{(1,1),(2,2),(3,3)}, {(1,2),(2,3),(3,1)}, {(1,3),(2,1),(3,2)},
{(1,1),(2,3),(3,2)}, {(1,2),(2,1),(3,3)}, {(1,3),(2,2),(3,1)}.

Semi-Latin squares and their duals have applications in the design of
comparative experiments, including the design of agricultural experiments,
consumer testing, and via their duals, human-machine interaction (see Preece
and Freeman (1983); Bailey (1988, 1992, 2011); Edmondson (1998), and their
references). Thus, it is important to know statistically optimal, or at least
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efficient, (n×n)/k semi-Latin squares for given values of n and k. Following
the analysis by Bailey (1992), an (n× n)/k semi-Latin square is optimal (in
the class of (n×n)/k semi-Latin squares) with respect to a given optimality
criterion if and only if its underlying block design is optimal with respect to
that criterion in the class of underlying block designs of (n×n)/k semi-Latin
squares. In addition, as shown by Bailey (2011), the dual of an (n × n)/k
semi-Latin square S is optimal (in the class of duals of (n× n)/k semi-Latin
squares) if and only if S is optimal, for a wide range of statistical optimality
criteria, including A, D and E.

An equireplicate design with parameters (v, b, r, k), or simply a (v, b, r, k)-
design, is a block design having v > 1 treatments and b blocks, such that
each block is a set consisting of k > 1 treatments, and each treatment is in
exactly r > 0 blocks. Note that such a block design is binary, in that no
treatment occurs more than once in a block. Note also that the underlying
block design of an (n× n)/k semi-Latin square is an (nk, n2, n, k)-design.

The concurrence matrix Λ of a (v, b, r, k)-design ∆ is the v × v matrix
whose rows and columns are indexed by the treatments of ∆, and whose
(α, β)-entry is the number of blocks containing both α and β. The scaled
information matrix of ∆ is

F (∆) := Iv − (rk)−1Λ,

where Iv is the v × v identity matrix. The eigenvalues of F (∆) are all real
and lie in the interval [0, 1]. At least one eigenvalue is zero: an associated
eigenvector is the all-1 vector. The remaining eigenvalues δ1 ≤ δ2 ≤ · · · ≤
δv−1 of F (∆) are called the canonical efficiency factors of ∆. These are all
non-zero if and only if ∆ is connected (that is, the treatment-block incidence
graph of ∆ is a connected graph). If ∆ is not connected, then we define
A∆ = D∆ = E∆ := 0. Otherwise, these efficiency measures are defined

by A∆ := (v − 1)/
∑v−1

i=1 1/δi, D∆ :=
(∏v−1

i=1 δi
)1/(v−1)

, and E∆ := δ1 =
min{δ1, . . . , δv−1}. We say that ∆ is A-optimal in a class C of (v, b, r, k)-
designs containing ∆ if A∆ ≥ AΓ for each Γ ∈ C. D-optimal and E-optimal
are defined similarly. We refer the reader to Bailey and Cameron (2009) for
the definitions of Schur-optimality and MV-optimality.

When we apply the terms canonical efficiency factors, connected, and
efficiency measure to a semi-Latin square S, we shall always mean the same
as when those terms are applied to the underlying block design of S.

In this paper, new theoretical and computational methods are developed
and applied to determine optimal, or at least efficient, (n× n)/k semi-Latin
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squares for values of n and k for which such semi-Latin squares were previ-
ously unknown.

We start by providing background results, including a discussion of the
“pseudo-Trojan” semi-Latin squares constructed and analysed by Bailey (1992),
and which were conjectured to be optimal.

We then describe the enumeration of the (4×4)/k semi-Latin squares for
k = 2, . . . , 10, including determining those that are A-, D- and E-optimal.
The results for k = 5, . . . , 10 are completely new.

A semi-Latin square U is uniform if any two blocks of U not in the same
row or column meet in a constant number µ = µ(U) of symbols, and we say
that an n×n semi-Latin square S is a subsquare of an n×n semi-Latin square
U if S = U or U is obtained by superimposing S and another n×n semi-Latin
square (with a disjoint symbol-set). Pseudo-Trojan semi-Latin squares, as
well as the semi-Latin squares constructed by Bedford and Whitaker (2001),
can be viewed as certain (n × n)/k subsquares of (n × n)/u uniform semi-
Latin squares, with u − k < n − 1, and we study the canonical efficiency
factors of such subsquares. One outcome of this study is to explain certain
numerical observations of Bedford and Whitaker (2001). We then enumerate
the uniform (5 × 5)/8 semi-Latin squares, and examine their subsquares,
obtaining (5× 5)/6 counterexamples to both Bailey’s conjecture and one of
Bedford and Whitaker.

Pseudo-Trojan semi-Latin squares provide efficient (although we now
know, not necessarily optimal) (n × n)/k semi-Latin squares when n is a
prime power. We then discuss the situation for 6 × 6 semi-Latin squares,
with our particular contribution being efficient (6× 6)/k semi-Latin squares
for k = 4, 5, 6.

Throughout, we make extensive use of the author’s DESIGN package
(Soicher, 2011) for GAP (The GAP Group, 2012), and in Appendix A we
present the group-theoretical framework to use this package in the enumer-
ation of semi-Latin squares with given properties. Readers unfamiliar with
permutation groups and group actions should consult Cameron (1999), or
may want to skim over much of Appendix A.

One especially novel aspect of this paper is that exact algebraic computa-
tion is used for the comparison of efficiency measures, and these techniques
are discussed in Appendix B. Thus, when determining the optimal designs
amongst those enumerated, or determining a counterexample to a conjecture
on optimality, there is no danger of numerical error producing an erroneous
result.
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2 Background

Let s be a positive integer. An s-fold inflation of an (n × n)/k semi-Latin
square is obtained by replacing each symbol α in the semi-Latin square by s
symbols σα,1, . . . , σα,s, such that σα,i = σβ,j if and only if α = β and i = j.
The result is an (n×n)/(ks) semi-Latin square. For example, here is a 2-fold
inflation of a Latin square of order 3:

1 4 2 5 3 6
3 6 1 4 2 5
2 5 3 6 1 4

.

The superposition of an (n×n)/k semi-Latin square with an (n×n)/` semi-
Latin square (with disjoint symbol sets) is performed by superimposing the
first square upon the second, resulting in an (n × n)/(k + `) semi-Latin
square. An (n × n)/k semi-Latin square is Trojan if it is the superposition
of k mutually orthogonal Latin squares (MOLS) of order n with pairwise
disjoint symbol sets. For example, the semi-Latin square (1) is Trojan. The
canonical efficiency factors of (the underlying block design of) an (n× n)/k
Trojan semi-Latin square are 1− 1/k (k(n− 1) times), and 1 (k − 1 times);
see Bailey (1992, Corollary 5.2). Cheng and Bailey (1991) proved that each
(n × n)/k Trojan semi-Latin square is A-, D- and E-optimal. Indeed, they
proved that the underlying block design of an (n × n)/k Trojan semi-Latin
square is optimal in the class of all (nk, n2, n, k)-designs, with respect to
a wide range of optimality criteria, including the A-, D- and E-efficiency
measures. Of course, there may not exist k MOLS of order n, as when k ≥ n
or when n = 6 and k > 1.

An (n × n)/k pseudo-Trojan semi-Latin square P (n, k) is either Trojan
or k ≥ n and there must exist n − 1 MOLS L1, . . . , Ln−1 of order n from
which P (n, k) is constructed as follows. (The only n currently known with
the property that there exist n− 1 MOLS of order n are the prime powers.)
Let k = a(n−1)+b, with a and b integers with a > 0 and 0 ≤ b < n−1. Then
P (n, k) is formed by superimposing (a + 1)-fold inflations of L1, . . . , Lb and
a-fold inflations of Lb+1, . . . , Ln−1. The canonical efficiency factors of such a
P (n, k) are 1− (a+ 1)/k (b(n− 1) times), 1− a/k ((n− 1− b)(n− 1) times),
and 1 (nk− (n− 1)2− 1 times); see Bailey (1992, Corollary 5.3). Thus every
(Trojan or not) (n × n)/k pseudo-Trojan semi-Latin square has the same
canonical efficiency factors, and from these we can compute its A-, D- and
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E-efficiency measures. For example, a pseudo-Trojan (5 × 5)/6 semi-Latin
square P (5, 6) has

AP (5,6) = 145/173 ≈ .838150, DP (5,6) = (390625/43046721)1/29 ≈ .850315,
(2)

and EP (5,6) = 2/3.
Bailey (1992) introduced and analysed pseudo-Trojan squares (but did

not name them), and conjectured that each (n × n)/k pseudo-Trojan semi-
Latin square is “optimal”. In the context of Bailey (1992), we take this to
mean:

Bailey’s Conjecture. Each (n × n)/k pseudo-Trojan semi-Latin square is
A-, D- and E-optimal.

In the same paper, Bailey showed that this conjecture is true when n− 1
divides k, and also when n < 4. Chigbu (1996) established the conjecture in
the case n = k = 4.

An (n× n)/k semi-Latin square in which any two distinct symbols occur
together in at most one block is called a SOMA(k, n). It is widely believed
that a SOMA(k, n) that is optimal in the class of all SOMA(k, n)s is in
fact optimal in the class of all (n× n)/k semi-Latin squares. Note that each
(n×n)/k Trojan semi-Latin square is a SOMA(k, n), but a SOMA(k, n) may
exist when there do not exist k MOLS of order n. However, a SOMA(k, n)
always has k < n.

Bailey and Royle (1997) enumerated the underlying block designs of the
SOMA(2, 6)s, and determined optimal SOMA(2, 6)s for each of the effi-
ciency measures A, D, E, and E′ (E′ is more commonly known as MV).
All SOMA(k, n)s with n ≤ 6 were enumerated by the author and are avail-
able from his “SOMA Update” webpage (Soicher, 2002). Up to (semi-Latin
square) isomorphism there are just 2799 SOMA(2, 6)s and four SOMA(3, 6)s.
(See also Phillips and Wallis (1996) and Preece and Phillips (2002) regard-
ing the enumeration of SOMA(3, 6)s.) We find that the two SOMA(3, 6)s
which are superpositions of a Latin square of order 6 and a SOMA(2, 6) have
the same canonical efficiency factors and are A-, D-, E- and MV-optimal
amongst the SOMA(3, 6)s; see also (Bailey, 2011). There is no SOMA(k, 6)
with k > 3, so we shall focus in this paper on efficient (6× 6)/k semi-Latin
squares with k > 3.

Recall that a semi-Latin square U is uniform if any two blocks of U
not in the same row or column meet in a constant number µ = µ(U) of
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symbols. Soicher (2012) introduced and studied uniform semi-Latin squares.
An (n×n)/k uniform semi-Latin square U has k = µ(U)(n−1), with µ(U) =
1 if and only if U is a superposition of n−1 MOLS of order n. Soicher (2012)
also proved that each (n×n)/k uniform semi-Latin square is Schur-optimal.
In particular, each uniform semi-Latin square is A-, D- and E-optimal (see
Giovagnoli and Wynn (1981)). In addition, Soicher gave a construction to
make an (n× n)/k semi-Latin square SLS(G) from a transitive permutation
group G of degree n and order nk, and proved that SLS(G) is uniform if and
only if G is 2-transitive. He also constructed uniform (6×6)/(5µ) semi-Latin
squares for all integers µ > 1.

3 Enumeration of (4×4)/k semi-Latin squares

Each 2 × 2 semi-Latin square is simply an inflation of a Latin square of
order 2, and is not connected. Bailey (1992) enumerated the 3 × 3 semi-
Latin squares. Applying the methods discussed in Appendix A, we used the
DESIGN package function SemiLatinSquareDuals to enumerate the (4×4)/k
semi-Latin squares up to isomorphism (via their duals), for k = 2, . . . , 10.
This required under an hour of CPU-time on a 3.1 GHz PC running Linux.
Analysing these squares (using exact algebraic computation as described in
Appendix B), we found that each A-optimal square is in fact A-, D- and
E-optimal, and has the same canonical efficiency factors as a pseudo-Trojan
square of the same size. This verifies that Bailey’s conjecture holds in the
case of (4 × 4)/k semi-Latin squares with k ≤ 10, and so for these sizes, a
pseudo-Trojan square is A-, D- and E-optimal.

A summary of the results is given in Table 1. We record k, the number
of (4 × 4)/k semi-Latin squares (up to isomorphism), and the number of
(pairwise nonisomorphic) optimal (4× 4)/k semi-Latin squares. By optimal
we mean here A-, D- and E-optimal, and remark that for 2 ≤ k ≤ 10, an A-,
D- and E-optimal (4 × 4)/k semi-Latin square is MV-optimal if and only if
k 6∈ {4, 7, 10}.

Preece and Freeman (1983) enumerated by hand the (4×4)/2 semi-Latin
squares, up to both isomorphism and “strong isomorphism” (strong isomor-
phism is defined in Appendix A), and our results agree with theirs. Using
a mixture of hand and machine computation, Chigbu (1996) (see also Bai-
ley and Chigbu (1997)) enumerated the (4 × 4)/3 and (4 × 4)/4 semi-Latin
squares, up to both isomorphism and strong isomorphism. Our results dis-
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k no. squares no. optimal
2 10 1
3 40 1
4 164 3
5 621 3
6 2298 2
7 7905 5
8 25657 4
9 77744 2

10 221201 6

Table 1: (4× 4)/k semi-Latin squares.

agree with his, and our consistency checks indicate that he missed some
isomorphism classes. For the record, we calculate that, up to strong isomor-
phism, there are exactly 46 (4× 4)/3 and 201 (4× 4)/4 semi-Latin squares.

4 On subsquares of uniform semi-Latin squares

Let S and U be n× n semi-Latin squares. Recall that S is a subsquare of U
if S = U or U is a superposition of S and another n× n semi-Latin square.
A subsquare S of U is proper if S 6= U .

In this section, we prove a theorem about the canonical efficiency factors
of the (n×n)/k subsquares of uniform (n×n)/u semi-Latin squares, such that
u−k < n−1. Such subsquares include pseudo-Trojan squares and the semi-
Latin squares constructed by Bedford and Whitaker (2001). Our theorem
explains certain numerical observations by Bedford and Whitaker (2001),
and leads us, in the next section, to finding counterexamples to Bailey’s
conjecture and a similar conjecture of Bedford and Whitaker.

It is convenient to study subsquares via their duals, and the reader should
keep in mind that the canonical efficiency factors not equal to 1 of a semi-
Latin square S, and their multiplicities, are the same as those of the dual S∗

of S (see Bailey and Cameron (2009, Section 3.1.1)).

Lemma 4.1. Let S and T be n× n semi-Latin squares with disjoint symbol
sets, and let U be the superposition of S and T . Then the concurrence matrix
of U∗ is the sum of the concurrence matrices of S∗ and T ∗.
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Proof. Straightforward.

Theorem 4.2. Let n > 2 and let S be an (n× n)/k subsquare of a uniform
(n× n)/u semi-Latin square U , such that u− k < n− 1. Then:

1. ES = 1− u/(k(n− 1)) = 1− µ(U)/k;

2. if P is a pseudo-Trojan (n× n)/k semi-Latin square, then ES = EP ;

3. if P is a pseudo-Trojan (n × n)/k semi-Latin square and U is the
superposition of S and an n×n Trojan square (in particular, if u−k =
1), then the canonical efficiency factors of S and their multiplicities
are the same as those of P .

Proof. First suppose that S is a proper subsquare of U , so that U is the
superposition of S and some (n× n)/(u− k) semi-Latin square T . Let L be
the concurrence matrix of T ∗ and let M be the concurrence matrix of U∗.
Then L and M are real, symmetric, positive semi-definite matrices whose
rows and columns are indexed by {1, . . . , n}2, as are the co-ordinates of the
(column) vectors in what follows.

Since U is a uniform semi-Latin square, U∗ is a partially balanced incomplete-
block design with respect to the L2-type association scheme, and the eigen-
values of M are nu with multiplicity 1, 0 with multiplicity 2n − 2, and
nu/(n− 1) with multiplicity (n− 1)2 (see, for example, Vartak (1959)). De-
note the eigenspaces corresponding to these (distinct) eigenvalues by V0, V1,
and V2, respectively. From the proof of Theorem 3.4 of Soicher (2012), we
observe that Lv = n(u − k)v if v ∈ V0 and Lv = 0 if v ∈ V1. Thus, there
is a basis v1, . . . , v(n−1)2 of V2 = (V0 + V1)⊥ consisting of pairwise orthog-
onal eigenvectors of L. Let τi be the eigenvalue of L corresponding to vi
(i = 1, . . . , (n− 1)2).

By Lemma 4.1, the concurrence matrix of S∗ is M −L. From the discus-
sion above, the eigenvalues of M − L are nk (once), 0 (2n − 2 times), and
nu/(n−1)−τi, for i = 1, . . . , (n−1)2. Now S∗ has scaled information matrix

In2 − (nk)−1(M − L),

and so the canonical efficiency factors of S∗ are 1 (2n − 2 times), and 1 −
u/(k(n − 1)) + τi/(nk), for i = 1, . . . , (n − 1)2. In particular, the least
canonical efficiency factor of S∗ (and so of S) is 1− u/(k(n− 1)) + τ/(nk),
where τ := min{τ1, . . . , τ(n−1)2}.
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Now T is an (n × n)/(u − k) semi-Latin square, and by assumption,
u− k < n− 1. Thus (n− 1)2 > (u− k)n− 1, so T has fewer than (n− 1)2

canonical efficiency factors, so T ∗ has more than 2n− 2 canonical efficiency
factors equal to 1, so τ = 0, and we have

ES = ES∗ = 1− u/(k(n− 1)).

We complete the proof of part 1 by noting that if S = U then ES = EU =
1− 1/(n− 1), as required.

Suppose now that P is a pseudo-Trojan (n×n)/k semi-Latin square, and
let µ := µ(U) = u/(n − 1). Then P is an (n × n)/k subsquare of some
µ-fold inflation Q of a superposition of n− 1 MOLS of order n (since k ≤ u),
and Q is a uniform (n × n)/u semi-Latin square. Thus, both S and P are
(n× n)/k subsquares of certain uniform (n× n)/u semi-Latin squares, with
u− k < n− 1, and so by part 1, we have ES = EP = 1− µ/k, and the proof
of part 2 is complete.

Now suppose that U is the superposition of S and a Trojan square T ,
We know that Q above is the superposition of P and some Trojan square
T ′ having the same size as T . By Bailey (1992), T and T ′ have the same
canonical efficiency factors, so it follows from the proof of part 1 that both
S∗ and P ∗ have the same canonical efficiency factors, and so too must S and
P .

Bedford and Whitaker (2001) used sets of n − 1 MOLS of order n to
construct efficient (n × n)/k semi-Latin squares for certain k ≥ n, when n
is a prime power. Their construction starts by superimposing certain su-
perpositions of n − 1 MOLS of order n, which makes a uniform semi-Latin
square U , and then if required, removing an n× n Trojan semi-Latin square
from U . Thus, by part 3 of the result above, an (n×n)/k semi-Latin square
constructed by their method has the same canonical efficiency factors as a
pseudo-Trojan (n × n)/k semi-Latin square P (n, k). This explains the nu-
merical observation by Bedford and Whitaker (2001) that the A-, D- and
E-efficiency measures of the squares they construct appear to be the same
as the pseudo-Trojan squares of the same size constructed by Bailey (1992).
(However, Bedford and Whitaker’s calculation of E′-efficiency measures of
pseudo-Trojan squares is erroneous, and so their comparison with that mea-
sure for their squares is not valid.) Bedford and Whitaker (2001) also conjec-
tured that the semi-Latin squares coming from their construction are A-, D-
and E-optimal. However, one such square is a (5 × 5)/6 semi-Latin square,
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so the following section provides counterexamples to their conjecture, as well
as to Bailey’s.

5 Counterexamples to Bailey’s conjecture

The theory of the previous section shows that we cannot get a counterexample
to Bailey’s conjecture simply by removing a Trojan subsquare from some
uniform semi-Latin square, but suggests it may be fruitful to examine other
subsquares of uniform squares. Having found no counterexample to Bailey’s
conjecture when n = 4, we enumerated the uniform (5 × 5)/8 semi-Latin
squares and studied their subsquares. It turns out that, up to isomorphism,
there are exactly 10 uniform (5×5)/8 semi-Latin squares. This enumeration,
via their duals, is easily accomplished by the DESIGN package, by applying
Corollary A.4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 13 14 19 25 26 1 15 16 20 21 27 2 8 22 23 28 29 3 4 9 10 17 30 5 6 11 12 18 24
9 11 15 20 22 28 3 5 13 23 25 29 1 6 7 10 24 30 2 12 14 18 26 27 4 8 16 17 19 21
8 12 17 23 24 27 6 14 18 19 22 30 4 9 11 21 25 26 1 5 7 16 28 29 2 3 10 13 15 20

10 16 18 21 29 30 2 4 17 24 26 28 3 5 12 19 20 27 6 8 11 13 15 25 1 7 9 14 22 23

Figure 1: B(5, 6): a (5× 5)/6 counterexample to Bailey’s conjecture.

31 32 33 34 35 36 37 38 39 40
33 37 31 39 32 34 35 40 36 38
36 40 35 38 37 39 31 34 32 33
35 39 32 40 31 38 33 36 34 37
34 38 36 37 33 40 32 39 31 35

Figure 2: A SOMA(2, 5) whose superposition with B(5, 6) is uniform.

We then used the BlockDesigns function to enumerate the (5 × 5)/k
subsquares of each of these uniform squares, for k = 5, 6, up to the action
of the automorphism group of each such uniform square and the naming
of symbols. This was done by enumerating the (25, 5k, k, 5)-subdesigns (for
k = 5, 6) of the duals of the (5 × 5)/8 uniform squares, up to the actions
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of their respective automorphism groups. We then analysed these (5× 5)/k
subsquares, and found that, up to isomorphism, exactly 29 of these have a
higher A-measure than a pseudo-Trojan (5 × 5)/k semi-Latin square. All
these 29 have k = 6, and of these 29, exactly 24 come from removing a (non-
Trojan) SOMA(2, 5) from a uniform square, and these 24 are precisely the
ones with both A-measure and D-measure higher than those of a (5 × 5)/6
pseudo-Trojan square P (5, 6). Of course, all 29 have the same E-measure,
2/3, as P (5, 6). We give in Figure 1 the (5× 5)/6 semi-Latin square B(5, 6)
with the best A-measure of the 29. It also has the best D-measure of these.
In Figure 2 we display a SOMA(2, 5) such that the superposition of B(5, 6)
with this SOMA is uniform. We have:

AB(5,6) = 309578045/369257731 ≈ .838379,

DB(5,6) = (30592715909/3363025078125)1/29 ≈ .850387

(compare with (2)).

6 Efficient 6× 6 semi-Latin squares

Pseudo-Trojan semi-Latin squares provide easy to construct and efficient
(although not necessarily optimal) (n × n)/k semi-Latin squares when n is
a prime power. In the case of n = 6, however, efficient (n× n)/k semi-Latin
squares were known only for k = 2 and 3. Here we provide new efficient
(6 × 6)/k semi-Latin squares for k = 4, 5, 6, obtained as subsquares of a
certain remarkable (6 × 6)/6 semi-Latin square. We remark that efficient
(6× 6)/k semi-Latin squares for k = 7, 8, 9, 10 are calculated and presented
in (Soicher, to appear), and are found as subsquares of a certain uniform
(6× 6)/10 semi-Latin square.

6.1 A remarkable (6× 6)/6 semi-Latin square

Let

A :=

1 13 31 14 20 26 21 27 33 4 10 16 11 23 29 6 12 36
16 29 33 1 10 23 6 13 20 12 14 27 4 21 36 11 26 31
14 23 36 4 27 31 1 12 29 11 13 21 6 16 26 10 20 33
4 12 26 6 11 33 16 23 31 1 20 36 10 13 27 14 21 29

11 20 27 12 16 21 10 26 36 6 29 31 1 14 33 4 13 23
6 10 21 13 29 36 4 11 14 23 26 33 12 20 31 1 16 27

.
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Then, up to isomorphism, A is the unique SOMA(3, 6) having an automor-
phism group of order 72 (A is not an optimal SOMA). Let H be this auto-
morphism group. It turns out that, up to the naming of symbols, there is
just one further H-invariant SOMA(3, 6), which can be taken to be:

B :=

7 19 25 2 8 32 3 9 15 22 28 34 5 17 35 18 24 30
2 9 24 15 30 34 7 28 35 5 19 32 8 18 25 3 17 22
3 8 28 7 17 24 18 22 32 2 30 35 9 19 34 5 15 25

15 22 35 18 19 28 5 8 30 9 17 25 3 24 32 2 7 34
5 18 34 3 25 35 2 17 19 8 15 24 7 22 30 9 28 32

17 30 32 5 9 22 24 25 34 3 7 18 2 15 28 8 19 35

.

Now consider the superposition X6 of A and B. The symbols of X6 have
been chosen to highlight the fact that it is the superposition of Latin squares
L1, . . . , L6, with respective symbol sets

{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}, . . . , {31, 32, 33, 34, 35, 36}.

Note that a semi-Latin square S is a superposition of Latin squares if and
only if its dual S∗ is resolvable. (This can be checked and resolutions can be
determined using the DESIGN package.) Moreover, any two blocks of X6, not
in the same row or column, meet in 1 or 2 symbols. We have also determined
that the group of all (semi-Latin square) automorphisms of X6 has order 144,
and that this group acts transitively on both the union and the Cartesian
product of the rows and columns of X6.

The canonical efficiency factors of X6 are 3/4 with multiplicity 16, 8/9
with multiplicity 9, and 1 with multiplicity 10. As shown in Table 2, even if
there were five MOLS of order six, then each of the A-, D- and E-efficiency
measures for X6 would be larger than the corresponding measures for a
pseudo-Trojan (6 × 6)/6 semi-Latin square. Note also that X6 cannot be
a subsquare of a uniform (6 × 6)/10 semi-Latin square, for otherwise, the
E-efficiency measure of X6 would be 2/3.

Now let Xk be the semi-Latin square formed by the superposition of
L1, . . . , Lk. For k = 2, . . . , 6, Table 2 records approximations to the A- and
D-measures, as well as the E-measure, of Xk. For k = 2, 3, 4, 5, the table also
records (approximations to) the relative efficiency measures of Xk compared
to a hypothetical optimal superposition P (6, k) of k MOLS of order 6 (were
k MOLS of order 6 to exist), as well as the relative efficiency measures of
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k AXk
DXk

EXk
AXk

/AP (6,k) DXk
/DP (6,k) EXk

/EP (6,k)

2 .511628 .526849 1/3 .976744 .989350 2/3
3 .674492 .689909 1/2 .972062 .986658 3/4
4 .761394 .771929 5/8 .982088 .991334 5/6
5 .811126 .819262 7/10 .985938 .993038 7/8
6 .844221 .850612 3/4 1.00101 1.00031 9/8

Table 2: Efficiency measures of Xk.

X6 compared to a hypothetical (6 × 6)/6 pseudo-Trojan semi-Latin square
P (6, 6) (were five MOLS of order 6 to exist).

Now X2 and X3 are not quite as efficient as certain SOMAs of the same
respective sizes, but X4, X5 and X6 are new and efficient. Indeed, we con-
jecture that X5 and X6 are A-, D- and E-optimal.

As far as n = 10 goes, there are two MOLS of order 10, but it is a
major unsolved problem as to whether there are three MOLS of this order.
Soicher (1999) constructed the first SOMA(3, 10)s, and at at present, the
SOMA(3, 10) with the best known A-efficiency measure is that in Figure 4 of
(Soicher, 1999). The first SOMA(4, 10) is displayed on the webpage (Soicher,
2002), and the construction of an efficient (10 × 10)/6 semi-Latin square is
given as an example in (Soicher, to appear).

A Enumerating semi-Latin squares via their

duals

The author’s DESIGN package (Soicher, 2011) is a refereed and officially ac-
cepted GAP (The GAP Group, 2012) package which provides functionality
for constructing, enumerating, partitioning and studying block designs. The
most important DESIGN package function is BlockDesigns, which can con-
struct and enumerate block designs satisfying a wide range of user-specified
properties. More generally, BlockDesigns can enumerate subdesigns of a
given block design ∆, such that the subdesigns each have the same user-
specified properties, such as each being an equireplicate block design with a
given concurrence matrix Λ, and having specified possible sizes of intersec-
tions of distinct blocks. (Here a subdesign of ∆ means a block design with
the same treatment set as ∆ and whose block multiset is a submultiset of
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the blocks of ∆.) The subdesigns are enumerated up to the action of a given
subgroup G of the automorphism group of ∆, and it can be required that
each subdesign be invariant under a given subgroup H of G.

In this appendix we show how to transform certain enumeration problems
for semi-Latin squares into enumeration problems for block designs (see also
Bailey and Chigbu (1997) and Bailey (2011)), in a way which allows the
application of the function BlockDesigns in the DESIGN package to perform
the required enumerations. Explicit GAP code implementing this approach
can be found in (Soicher, to appear).

Let Sn denote the group of all permutations of {1, . . . , n}, and let

Wn := 〈Sn × Sn, τ | τ 2 = 1, τ(a, b)τ = (b, a) for all a, b ∈ Sn〉.

Then Wn (which is isomorphic to the wreath product of Sn with the cyclic
group of order 2) acts on the set of duals of (n× n)/k semi-Latin squares as
follows. Let S∗ = (V,B) be such a dual, with treatment set V := {1, . . . , n}2

and block multiset B, and let g ∈ Wn. (We consider a multiset to be a
list, where order does not matter.) Then g = (a, b) or g = (a, b)τ for some
a, b ∈ Sn. For (i, j) ∈ V , define (i, j)(a,b) := (ia, jb) and (i, j)(a,b)τ := (jb, ia).
In this way, Wn acts on V . We find the g-image Bg of the block multiset B
of S∗ by applying g to each treatment in each block in B. It is not difficult
to see that (S∗)g := (V,Bg) is the dual of a semi-Latin square T isomorphic
to S. Indeed, if g = (a, b) then T is obtained from S by permuting its rows
by a and its columns by b, and if g = (a, b)τ then T is obtained from S by
permuting its rows by a, its columns by b, and then transposing. Conversely,
suppose S and T are isomorphic (n×n)/k semi-Latin squares, with respective
duals S∗ and T ∗. Then T can be obtained from S by applying some row
permutation a, some column permutation b, followed possibly by transposing
and/or renaming symbols. Then (S∗)(a,b) = T ∗ if transposing does not take
place, and otherwise (S∗)(a,b)τ = T ∗. To summarize, we have proved the
following:

Theorem A.1. The orbits of Wn acting on the duals of (n × n)/k semi-
Latin squares are in one-to-one correspondence with the isomorphism classes
of (n× n)/k semi-Latin squares.

We now define a Wn-invariant block design Un,k = (V,Bn,k), which con-
tains the dual of every (n×n)/k semi-Latin square. As before, V = {1, . . . , n}2.
The block multiset Bn,k consists of all the subsets of V of the form

{(1, 1π), (2, 2π), . . . , (n, nπ)},
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with π ∈ Sn, and with each such block having multiplicity k (giving a total
of kn! blocks). Now if D = (V,B) is the dual of an (n × n)/k semi-Latin
square, then D is an (n2, nk, k, n)-design and D is a subdesign of Un,k (i.e.
D and Un,k have the same treatment set and B is a submultiset of Bn,k). The
converse clearly holds: if D is an (n2, nk, k, n)-subdesign of Un,k then D is
the dual of some (n× n)/k semi-Latin square.

We have thus proved the following:

Theorem A.2. The isomorphism classes of the (n×n)/k semi-Latin squares
are in one-to-one correspondence with the Wn-orbits of (n2, nk, k, n)-subdesigns
of Un,k. Representatives of these orbits give the duals of isomorphism class
representatives of the (n× n)/k semi-Latin squares.

We may thus enumerate (the duals of) the (n×n)/k semi-Latin squares by
using the function BlockDesigns to enumerate the (n2, nk, k, n)-subdesigns
of Un,k, up to the action of Wn. However, there appear to be far too many
semi-Latin squares for a complete enumeration when n > 4 and k > 1, so
additional constraints must be specified, such as all the required duals being
invariant under a given non-trivial subgroup of Wn.

Adaptations of Theorem A.2 allow for enumerations (using the function
BlockDesigns) of semi-Latin squares satisfying certain Wn-invariant prop-
erties. For example:

Corollary A.3. The isomorphism classes of the SOMA(k, n)s are in one-to-
one correspondence with the Wn-orbits of the equireplicate subdesigns of Un,1
having parameters (n2, nk, k, n) and the property that each pair of distinct
blocks meet in at most one treatment. Representatives of these orbits give
the duals of isomorphism class representatives of the SOMA(k, n)s.

Corollary A.4. Suppose n − 1 divides k and let µ := k/(n − 1). The
isomorphism classes of the uniform (n×n)/k semi-Latin squares are in one-
to-one correspondence with the Wn-orbits of the subdesigns of Un,µ with the
property that any two treatments having no co-ordinate in common occur
together in exactly µ blocks. Representatives of these orbits give the duals
of isomorphism class representatives of the uniform (n × n)/k semi-Latin
squares.

For example, we find that, up to isomorphism, there are just 277 uniform
(5× 5)/12 semi-Latin squares. In (Soicher, to appear), we give explicit GAP
code used to enumerate the 98 uniform (6 × 6)/10 semi-Latin squares with
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the property that no two distinct symbols occur together in more than two
blocks.

Some call the isomorphism of semi-Latin squares defined in this paper
“weak isomorphism”, with “strong isomorphism” not allowing the operation
of transposing to be used (see Bailey and Chigbu (1997)). More precisely, two
(n× n)/k semi-Latin squares are strongly isomorphic if one can be obtained
from the other by applying one or more of: a row permutation, a column
permutation, and renaming symbols. This notion of isomorphism can be
accommodated simply by replacing Wn by its subgroup Sn × Sn.

Some straightforward applications of the methods of this appendix are im-
plemented in the DESIGN package function SemiLatinSquareDuals, which
calls the function BlockDesigns appropriately. For example, the function
call SemiLatinSquareDuals(4,5) returns a list of the duals of the elements
of a set of isomorphism class representatives of the (4 × 4)/5 semi-Latin
squares, and the function call SemiLatinSquareDuals(6,3,"default",[0,1])
returns a list of the duals of the elements of a set of isomorphism class rep-
resentatives of the SOMA(3, 6)s. Further information can be obtained from
the DESIGN package documentation.

B Exact algebraic computation for compar-

ing efficiency measures

In this appendix we outline our exact computational techniques for com-
paring the A-, D- and E-efficiency measures of equireplicate designs. These
techniques have been implemented in the most recent version of the DESIGN
package for GAP.

Let ∆ be a (v, b, r, k)-design that we wish to compare with other such
designs. We first compute the scaled information matrix F := F (∆) and
its characteristic polynomial χF (x). (It appears that GAP is efficient at
calculating characteristic polynomials with many low-degree factors, such as
we often encounter in our current situation.) Let

e∆(x) := χF (x)/x = xv−1 + ev−2x
v−2 + · · ·+ e1x+ e0,

so that the zeros of e∆(x) (counting repeats) are the canonical efficiency
factors δ1 ≤ · · · ≤ δv−1 of ∆. We have e0 6= 0 if and only if ∆ is connected,
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which we now assume is the case. Moreover,

(−1)v−1e0 =
v−1∏
i=1

δi = (D∆)v−1,

and we can compare D-measures by comparing their (v− 1)-th powers. Now
the polynomial

e−1
0 (e0x

v−1 + e1x
v−2 + · · ·+ ev−2x+ 1)

is monic and its zeros are 1/δ1, . . . , 1/δv−1, so −e1/e0 =
∑v−1

i=1 1/δi, and so

A∆ = −(v − 1)e0/e1.

We now outline how we determine E∆ exactly if it is rational, and other-
wise, how we determine an interval [a, b] containing E∆, such that a and b are
rational and the length of [a, b] is at most a given ε > 0. All computations
take place over the rational numbers and are performed exactly in GAP.

Let e(x) := e∆(x), let e′(x) denote the derivative of e(x), and let

f(x) := e(x)/gcd(e(x), e′(x)).

Then f(x) has the same zeros as e∆(x), but each with multiplicity 1. We
then determine the set R of rational zeros of f(x) and set

g(x) := f(x)/
∏
r∈R

(x− r).

If R is non-empty we apply a Sturm sequence (see Childs (1995, p.280–285))
to determine the number of (real) zeros of g(x) in [0,min(R)]. If there are
none, then we have that E∆ = min(R), and otherwise, we apply bisection
and Sturm sequences repeatedly, starting with the interval [0,min(R)], to
find the required interval [a, b] containing E∆. If R is empty then we again
apply bisection and Sturm sequences repeatedly, this time starting with the
interval [0, 1]. The bisection process works as follows, given an initial interval
[c, d], with c, d rational, d− c > 0, and g(c) 6= 0 6= g(d). If d− c ≤ ε we stop,
with a := c and b := d. Otherwise, we calculate a Sturm sequence to find
the number of zeros of g(x) in [c, (c + d)/2]. If this number is not zero, we
continue the process with the interval [c, (c + d)/2]; otherwise, we continue
with the interval [(c+ d)/2, d].
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Since ∆ is an equireplicate design, the canonical efficiency factors of ∆
not equal to 1, and their multiplicities, are the same as those of the dual
block design ∆∗ of ∆ (see Bailey and Cameron (2009, Section 3.1.1)). Thus,
if v exceeds the number b of blocks of the connected design ∆, and b > 1, we
may reduce the size of the calculations above by applying them to ∆∗. We
then have A∆ = (v−1)/((b−1)/A∆∗ +v−b), (D∆)v−1 = (D∆∗)b−1,E∆ = E∆∗ .

There are of course other measures of efficiency than the A-, D- and E-
measures. One such measure, which is rational and can be computed exactly
by the most recent version of the DESIGN package, is the MV-measure (see
Bailey and Royle (1997); Bailey and Cameron (2009)).
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