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Summary

A- and MV-optimal block designs are identified in the class of minimally connected

designs when the observations within blocks are spatially correlated. All connected

designs are shown to be D-equal regardless of the correlation structure, and a sufficient

condition for E-optimality is presented. Earlier results for the uncorrelated case are

strengthened.

NOTE: See pages 21-22 for additional results found after this paper was accepted for

publication.

1 Introduction

Consider comparing the relative effectiveness of v treatments employing n = bk ex-

perimental units arranged into b blocks of size k. The standard linear model for the

observation yju on unit u in block j when using design d is

yju = µ + τd[j,u] + βj + εju (1)
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for u = 1, 2, . . . , k and j = 1, 2, . . . , b. The components of (1) are an overall mean µ, the

effect τd[j,u] of treatment d[j, u] assigned to unit u in block j by design d, a block effect βj ,

and a random error εju with zero mean. Writing τ = (τ1, . . . , τv)′ and β = (β1, . . . , βb)′

for the vectors of treatment and block effects, and yn×1 for the vector of yields arranged

in lexicographic order, then (1) says the mean vector is E(y) = µ1n + Mdτ + Lβ for

L = Ib ⊗ 1k the n × b unit/block incidence matrix, and Md the n × v unit/treatment

incidence matrix defined by the d[j, u]. Here and elsewhere, 1q denotes a column of q

ones (likewise 0q a column of q zeros). Choice of design is choice of Md.

It is well known that all treatment contrasts are estimable under d if and only if

the information matrix for estimation of treatment effects, Cd = M ′
d(I − 1

kLL′)Md, is

of rank v − 1; equivalently, the rank of Xd = (1, Md, L) is b + v − 1. A design with this

property is said to be connected. A necessary condition for d to be connected is that

the number of rows of Xd is at least its required rank, that is, n ≥ b + v − 1.

Several papers have appeared in the literature which discuss optimality of connected

block designs when the number of experimental units is minimal, n = b + v − 1. Let

D(v, b, k) denote the class of all connected block designs having v treatments, b blocks

and constant block size k ≥ 2 satisfying

bk = b + v − 1. (2)

Then D(v, b, k) is the class of minimally connected designs. Alternatively, since esti-

mation of block and treatment effects takes all n − 1 degrees of freedom (there are no

degrees of freedom remaining for error), this is the class of saturated designs. When ob-

servations are equivariable and uncorrelated, the A-, MV-, and E-optimal designs in D
are known, and all connected designs are D-equal: see Bapat and Dey (1991), Mandal,

Shah and Sinha (1991), and Dey, Shah, and Das (1995). Here optimality of designs in

D is studied when observations are equivariable and correlated. For the D-optimality

problem, an arbitrary correlation structure is considered. For other optimality problems
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this spatial correlation structure is assumed:

cov(yju, yj′u′ ) =





0 if j 6= j′

σ2 if j = j′, u = u′

ρ|u−u
′ |σ

2 if j = j′, u 6= u′

(3)

where

1 > ρ1 ≥ ρ2 ≥ ρ3 ≥ . . . ≥ ρk−1 ≥ 0. (4)

In addition it is everywhere required that the variance-covariance matrix Σn×n for the

entire n× 1 observations vector y be positive definite, i.e.

a
′
Σa > 0 for any a 6= 0. (5)

The common diagonal element of Σ is denoted by σ2. The earlier results mentioned

above are for Σ = σ2In.

The paper proceeds as follows. Section 2 presents the basic properties of mini-

mally connected designs in a fashion suited to the current endeavor. Section 3 identifies

M-optimal (this includes A- and MV-optimal) designs for estimation of elementary

treatment contrasts. That all connected designs are D-equal is established in section 4.

Section 5 studies the E-optimality problem, providing a sufficient condition and deter-

mining optimal designs in some special cases. Concluding remarks comprise section 6.

2 Properties of Minimally Connected Designs

This section presents a lemma from which several useful properties of minimally con-

nected designs follow.

Lemma 2.1 For each d ∈ D, there is only one unbiased estimator for any treatment

contrast m′τ . Consequently, the ordinary least squares estimate (OLSE) and the general

least squares estimate (GLSE) for m′τ are the same.

Proof Suppose there are two unbiased estimators p′y and q′y for m′τ . Let a = p−q 6= 0

and write θ′ = (µ, τ ′, β′). Then 0 = E(a′y) = a′Xdθ for all θ ⇒ a′Xd = 0 ⇒ n >

rank(Xd) = b + v − 1, which contradicts (2). 2
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The result of lemma 2.1 also holds for block contrasts. The importance of the lemma

is in the corollaries that follow. Corollary 2.2 first appeared in Bapat and Dey (1991);

here the proof is much simpler.

Corollary 2.2 Any d ∈ D is necessarily binary.

Corollary 2.3 For any d ∈ D, no pair of blocks has more than one treatment in

common, that is, no pair of treatments occurs in more than one block.

Definition A chain in a block design is an even-length sequence of experimental units

(or the corresponding observations) such that two consecutive units share either the same

treatment or the same block, but not both, and such that no treatment or block is common

to more than two of the units.

If (y1, y2, . . . , yc) is a chain of observations connecting treatments i and i′ (blocks j and

j′), then the linear combination y1 − y2 + y3 − · · · − yc is an unbiased estimator of

the elementary treatment contrast τi − τi′ (respectively, the elementary block contrast

βj − βj′).

Corollary 2.4 For any d ∈ D, any two blocks are connected by exactly one chain, as

are any two treatments.

The development of connectedness in terms of rank can be seen in the text by Chakrabarti

(1962, chapter 2). The equivalent formulation via chains is handled nicely by Searle

(1971, section 7.4).

For later use two types of elementary treatment contrasts will be distinguished for

any particular design. If two treatments appear in the same block then their elemen-

tary contrast estimate is the difference between the corresponding observations for those

two units. This is called a within-block elementary contrast and its corresponding es-

timate a within-block elementary contrast estimate. If two treatments never appear in

the same block then their elementary contrast is estimated by the unique chain of ob-

servations connecting them. This is called a between-blocks elementary contrast and its

corresponding estimate a between-blocks elementary contrast estimate.
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Example 1 Consider the design in D(7, 3, 3) having blocks B1 = [1, 2, 3], B2 = [4, 1, 5],

and B3 = [5, 6, 7]. For this design, τ̂2 − τ̂3 = y12 − y13 is a within-block elementary

treatment contrast estimate for B1, while τ̂4− τ̂7 = (y21−y23)−(y33−y31) is a between-

blocks elementary treatment contrast estimate for blocks B2 and B3.

3 M-Optimal Designs for Elementary Treatment

Contrasts

The results established here will be for elementary treatment contrasts, but the concept

of Majorization optimality, also called M-optimality (Bagchi and Bagchi, 2001), can

be more generally construed as follows (the reader is referred to Bhatia, 1997, for a

complete discussion of majorization). Let e1d, e2d, . . . , emd be variances of a set of m

contrasts of interest when estimated using design d, and let ed be the vector of the egd

for g = 1, 2, . . . , m. Let f be a monotonically increasing convex function. Design d∗

is M-optimal for estimation of the m specified contrasts if d∗ minimizes
∑m

g=1 f(egd)

for every such f . A necessary and sufficient condition for M-optimality is that ed∗

is (weakly) submajorized by ed (in notation, ed∗ ≺w ed) for every d (Bhatia, 1997,

page 40). Authors like Bagchi and Bagchi (2001) have pursued M-optimality for the

canonical variances, that is, the egd are the inverses of the nonzero eigenvalues of the

information matrix Cd. For experiments in which estimation will focus on elementary

treatment contrasts τi−τi′ , a better choice is to let ed contain the
(v
2

)
pairwise variances

var(τ̂i − τ̂i′). Implications of M-optimality in this sense will be discussed following the

main result of this section, Theorem 3.1, and its proof.

The design d∗ ∈ D to be studied here is

B1 : 1 2 . . . l − 1 l l + 1 . . . k − 1 k

B2 : k + 1 k + 2 . . . k + l − 1 l k + l . . . 2k − 2 2k − 1
...

...
...

...
...

...
...

...
...

...

Bb : v − k + 2 v − k + 3 . . . v − k + l l v − k + l + 1 . . . v − 1 v

(6)

where treatment l = bk+1
2 c is placed on experiment unit u = bk+1

2 c in every block. If
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the block size k is odd then treatment l is at the middle unit in each block; if k is even

then in what follows treatment l could be at either of the middle two units in each block,

so for clarity unit u = k
2 is chosen.

Theorem 3.1 Under conditions (3)-(5) the design d∗ displayed in (6) is M-optimal for

estimation of elementary treatment contrasts.

Proof The factor σ2 will be ignored when expressing treatment contrast variances.

Let ed be the 1× (v
2

)
vector of elementary treatment contrast variances for an arbitrary

design d ∈ D(v, b, k). Decompose ed as ed = (e(1)
d , e

(2)
d ) where e

(1)
d consists of the

within-block elementary treatment contrast variances, and e
(2)
d contains the between-

blocks elementary treatment contrast variances. Corollaries 2.2 and 2.3 say that e
(1)
d is

1 × b
(k
2

)
, and e

(2)
d is thus 1 × [

(v
2

) − b
(k
2

)
] = 1 × (b

2

)
(k − 1)2, the latter being (k − 1)2

variances for each of the
(b
2

)
pairs of blocks.

It is easy to see that e
(1)
d = e

(1)
d∗ for some permutation of their elements. The

theorem will be shown if e
(2)
d Âw e

(2)
d∗ , which can be established through consideration

of two distinct scenarios.

Scenario 1: there is one treatment l common to all b blocks (these designs are exactly

those for which various optimalities have been proven in the uncorrelated case). It is

sufficient to compare the variances of between-blocks elementary treatment contrasts

for any two blocks (say B1 and B2), since the collection of (k − 1)2 such variances has

identical structure for any pair of blocks. Denote the replicates of treatment l in blocks

B1 and B2 as l[s] and l[t] respectively, where the bracketed subscript denotes the unit

on which this treatment appears, and with no loss of generality s ≤ t ≤ bk+1
2 c. Then

the layout of the two blocks for design d can be displayed as

B1 : 1 2 . . . s− 1 l[s] s + 1 . . . . . . k − 1 k

B2 : k + 1 k + 2 . . . . . . k + t− 1 l[t] k + t . . . 2k − 2 2k − 1

By Lemma 2.1 there is only one unbiased estimate for any between-blocks elementary

treatment contrast, which must be of the form (y1u1 − y1s) − (y2u2 − y2t) where u1 ∈
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{1, 2, . . . , k}/{s} and u2 ∈ {1, 2, . . . , k}/{t}. Thus the elements of e
(2)
d are

4− 2ρ|u1−s| − 2ρ|u2−t| (7)

again for u1 ∈ {1, 2, . . . , k}/{s} and u2 ∈ {1, 2, . . . , k}/{t}.
Choice of design d under this scenario is simply choice of s and t. Choice of s is

choice of k− 1 values from (ρ1, ρ2, . . . , ρk−1) for ρ|u1−s| in (7), and choice of t is likewise

choice of k − 1 values for ρ|u2−t|. While there are other restrictions, this fact is true:

among the k − 1 values for ρ|u1−s| induced by choice of s, no ρg can appear more than

twice (likewise for t). If s = bk+1
2 c = s∗ (say) is selected, then the k − 1 induced values

are (ρ1, ρ1, ρ2, ρ2, . . . , ρ k−1
2

, ρ k−1
2

) if k is odd, or (ρ1, ρ1, ρ2, ρ2, . . . , ρ k−2
2

, ρ k
2
) if k is even.

Let as and at be the (k− 1)-vectors of the ρ|u1−s| and ρ|u2−t| corresponding to choice of

s and t, with their elements (ash and ath, respectively) arranged in nonincreasing order.

Clearly as∗h ≥ ash for all h and any s. Thus for all h, h′ and any (s, t), taking t∗ = s∗,

as∗h + at∗h′ ≥ ash + ath′ ⇒ 4 − 2as∗h − 2at∗h′ ≤ 4 − 2ash − 2ath′ and it immediately

follows that e
(2)
d Âw e

(2)
d∗ .

Scenario 2: there are at least two blocks with no common treatment. For any two

blocks with a common treatment, the (k − 1)2 elementary between-blocks treatment

contrasts still obey the argument in scenario 1. For two blocks (say B1 and B2) having

no common treatment, corollary 2.4 says there must be a unique chain linking the two.

Thus there is a sequence of blocks of the following form:

B1 : . . . l1 . . . . . . . . .

Bj1 : . . . l1 . . . l2 . . .

Bj2 : . . . l2 . . . l3 . . .
...

...
...

...
...

...

Bjw : . . . lw . . . lw+1 . . .

B2 : . . . lw+1 . . . . . . . . .

(8)

Bj1 , Bj2 , . . ., Bjw are called the linking blocks and treatments l1, l2, . . ., lw+1 the linking

treatments. The subscripts for the linking treatments are not their positions: they

simply indicate different treatments.
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An elementary treatment contrast for any two linking treatments in (8) is not a

between-blocks treatment contrast for B1 and B2, because it is either a within-block

treatment contrast, or a between-blocks treatment contrast for some other pair of blocks.

For example, the elementary contrast between l1 and l2 is a within-block treatment

contrast for Bj1 and the elementary contrast between l1 and lw+1 is a between-blocks

treatment contrast for Bj1 and Bjw . Thus the (k − 1)2 between-blocks elementary

treatment variances for B1 and B2 are those for comparing the treatments in B1 other

than l1 with the treatments in B2 other than lw+1. Suppose treatment l1 is at the sth unit

in B1 and lw+1 is at the tth unit in B2, where with no loss of generality s ≤ t ≤ bk+1
2 c.

Consider comparing two treatments, one at unit u1 (6= s) in B1, the other at unit u2

(6= t) in B2. The estimate of this between-blocks treatment contrast is

y1u1 − y1s − (y2u2 − y2t) +
w∑

m=1

(yjm[lm,Bjm ] − yjm[lm+1,Bjm ])

where [lm, Bjm ] is the position of the linking treatment lm in the linking block Bjm . The

variance of this contrast is

4− 2ρ|u1−s| − 2ρ|u2−t| + ∆ (9)

where ∆ = 2
∑w

m=1(1 − ρ|[lm,Bjm ]−[lm+1,Bjm ]|) > 0. Comparing (9) to (7), the subma-

jorization e
(2)
d Âw e

(2)
d∗ is obvious.

The proof is complete if no other scenario is possible, that is, if Scenario 1 is implied

by Bj ∩Bj′ 6= ∅ for all j 6= j′. This follows easily from corollaries 2.3 and 2.4. 2

Depending on the ρh’s, d∗ may or may not be uniquely M-optimal. Uniqueness (up

to treatment relabelling) is guaranteed by ρ1 > ρ2 > . . . > ρk−1 > 0. If all ρh’s are zero

(the uncorrelated case), then the structure is the same except that the position of the

common treatment l is irrelevant. This can be extended as:

Corollary 3.2 If correlation decays rapidly relative to block size in the sense that ρh

is zero for all h > h̃ and some h̃ ≤ bk−1
2 c, then M-optimality is attained if the common

treatment l in d∗ appears in any position having at least h̃ plots to either side.
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The A-value of a design is the sum of all elementary treatment contrast variances

(this is f(x) = x in the first paragraph of this section). A-optimal designs minimize

the average variance over elementary treatment contrasts. This can also be expressed

as the average of the canonical variances, or the average of the variances of any v − 1

orthonormal contrasts (Kempthorne, 1956). A direct consequence of Theorem 3.1 is:

Corollary 3.3 Under conditions (3)-(5) the design d∗ displayed in (6) is A-optimal.

The MV-value of a design d is MVd = maxi6=i
′ vard(τ̂i − τ̂i′). MV-optimal designs

minimize the largest variance for elementary treatment contrasts. Theorem 3.1 and the

definition of submajorization give:

Corollary 3.4 Under conditions (3)-(5) the design d∗ displayed in (6) is MV-optimal.

The uniqueness property mentioned just prior to corollary 3.2 need not hold for

MV-optimality. In fact, any d for which MVd = max(e(1)
d ) is MV-optimal.

Theorem 3.1 holds for the special case ρh = 0 for all h, showing that even in the

uncorrelated case, the optimality of d∗ is much stronger than has been previously es-

tablished. Indeed, whether or not the errors are correlated, the optimality is even

stronger than stated in Theorem 3.1, for it is clear from the proof that d∗ minimizes
∑

i

∑
i′>i f(var(τ̂i − τ̂i′)) even if the convexity condition is removed from f .

4 D-optimal Design

The D-value of a design d is the product of the positive eigenvalues of the Moore-Penrose

inverse C†
d of the information matrix Cd; D-optimal designs minimize the D-value. The

first step in attacking the D-optimality problem is to establish a useful expression for C†
d.

Lemma 4.1 For any d ∈ D,

C†
d =

1
σ2

(Iv − 1
v
Jv)Cov(τ̂(d))(Iv − 1

v
Jv) (10)

where Cov(τ̂(d)) is the variance-covariance matrix for any solution τ̂(d) to the reduced

normal equations for estimating treatment effects under design d, and Jv is the v×v

all-ones matrix.
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Proof Let Cd =
∑v−1

i=1 zdisis
′
i be the spectral decomposition of Cd where the eigen-

values are zd0 = 0 < zd1 ≤ zd2 ≤ . . . ≤ zd,v−1 and a corresponding set of orthonormal

eigenvectors is {s0 = 1√
v
1v, s1, s2, . . . , sv−1}. Then the Moore-Penrose inverse of Cd is

C†
d =

∑v−1
i=1

1
zdi

sis
′
i.

For given τ̂(d) let CP
d denote the r.h.s. of (10). Denote an arbitrary generalized inverse

of Cd by C−
d . Then for any estimable contrasts, say s

′
τ and m

′
τ where s′1 = m′1 = 0,

s′Cov(τ̂(d))m = Cov(s′τ̂(d),m
′τ̂(d)) = σ2s′C−

d m (11)

is invariant to the choice of C−
d and so equals σ2s′C†

dm. Now s
′
i(Iv− 1

vJv) is zero if i = 0

and otherwise is s
′
i. This fact with (11) gives that for any i, s

′
0C

P
d si = 0; for any i > 0,

s
′
iC

P
d si = 1

zdi
; and for any i 6= i′ 6= 0, s

′
iC

P
d si′ = 0. Write L = (s0, s1, . . . , sv−1) and let

D† be a v× v diagonal matrix whose diagonal elements are 0 and 1
zdi

(i = 1, . . . , v− 1).

Noting that L is orthogonal, it has just been shown that L′CP
d L = D† and so

CP
d = LL

′
CP

d LL
′
= LD†L′ =

v−1∑

i=1

1
zdi

sis
′
i = C†

d. 2

For any d ∈ D, a solution to the reduced normal equations can be found by setting

the estimator τ̂1 for treatment 1 to zero. For this choice Cov(τ̂(d)) is

Cov(τ̂(d)) = σ2




0 0′v−1

0v−1 ϕd


 (12)

where ϕd is the (v − 1)× (v − 1) variance-covariance matrix for τ̂2, . . . , τ̂v.

The following lemma in terms of Cd was first given by Chakrabarti (1963).

Lemma 4.2 All cofactors of Cd (or C†
d) have the same value. Thus for d ∈ D

v−1∏

i=1

1
zdi

=
1

vCo(Cd)
= vCo(C†

d),

where Co(.) denotes a matrix cofactor.

Corollary 4.3 For any d ∈ D, the D-value is
v−1∏

i=1

1
zdi

=
1
v
|ϕd| (13)

where |.| denotes determinant and ϕd is as defined in (12).
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Proof The cofactor of the (1,1) element of C†
d is |(Iv−1 − 1

vJv−1)ϕd(Iv−1 − 1
vJv−1)|,

which is easily seen from (10) and (12). This determinant is |Iv−1− 1
vJv−1|2|ϕd| = 1

v2 |ϕd|
and now apply lemma 4.2. 2

Lemma 4.4 |ϕd|, and thus the D-value, is invariant to the choice of d ∈ D.

Proof Label so that the treatment common to all blocks in d∗ is treatment 1. Then the

solution producing ϕd∗ in (12) is (after the initial 0) just the b(k−1) simple within-block

differences relative to unit bk+1
2 c:

τ̂(d∗) = (0, y11− y1b k+1
2
c, y12− y1b k+1

2
c, . . . , y1k − y1b k+1

2
c, y21− y2b k+1

2
c, . . . , ybk − ybb k+1

2
c)
′

(14)

The b(k − 1) nonzero elements of (14) are clearly a basis for the space of y projected

orthogonally to blocks (that is, for the estimation space of τ) regardless of the design.

It follows immediately that for any d ∈ D the solution τ̂(d) found by setting τ̂1 = 0 is

τ̂(d) =




1 0′v−1

0v−1 Rd


 τ̂(d?)

where Rd is nonsingular. Then from (12), ϕd = Rdϕd∗R
′
d and the proof is done if

|RdR
′
d| = 1. Lemma 2.1 says that Rd does not depend on Σ, so is the same as in the

case Σ = σ2I. The proof (Bapat and Dey, 1991) that the D-value is invariant to design

d in that case gives the result.

However one need not lean on the earlier graph-theoretic results. Here is a trans-

parent alternative that works directly with the estimators to establish |Rd| = ±1. The

solution vector τ̂(d) with τ̂1 = 0 is comprised exactly of the contrasts in y corresponding

to the unique chains from each treatment to the first treatment. For treatments in any

block containing 1, these are the same as in τ̂(d∗). For any block not containing 1, say

B1, there is a unique linking treatment through which the chain to treatment 1 passes

for every treatment (other than the linking treatment) in B1; see (8). Indeed, it is easily

seen that these chains differ only in their first members, and that for any block (say

Bj) these chains pass through prior to reaching a block with treatment 1, the chains to
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1 for treatments in Bj are, aside from their first members, the segments of the chains

from B1 starting from the linking treatment in Bj . Consequently, the chains to blocks

containing treatment 1 induce a partial order on the set of blocks (the last element

in a chain being the block containing treatment 1). This will be a crucial fact in the

induction on b to follow.

For b = 1 and any k, suppose with no loss of generality that treatment 1 in d appears

on plot s > bk+1
2 c, and that otherwise treatments 2, 3, . . . appear in order of the plots.

Then it can be checked that

Rd =




It (−1t|0t×(t−1))P

0t×t


−1t

∣∣∣∣∣∣∣

0′t−1

It−1


P




or




It (−1t|0t×t)P

0(t+1)×t


−1t+1

∣∣∣∣∣∣∣

0′t

It


P




(15)

as k is odd or even, where t = bk+1
2 c−1 and P is the permutation matrix that moves the

first column to position s− t− 1 (P = (pij) with nonzero pij specified by p1,s−t−1 = 1,

pi,i−1 = 1 for 2 ≤ i ≤ s−t−1, and pi,i = 1 for i ≥ s−t). Clearly Rd has determinant ±1.

Now assume the result holds for all saturated designs with b blocks and any k. Let

d be a saturated design with b + 1 blocks of size k, and let B1, B2, . . . , Bb+1 be any

ordering of the blocks of d that respects the partial order. Relabel treatments other

than treatment 1 so that B1 contains either 1, . . . , k or 2, . . . , k + 1 as B1 does or does

not contain 1. Then B1 is the first block in a chain of blocks, the last of which contains

1 (if B1 contains treatment 1, the chain consists only of B1). Consequently, removing

B1 from d leaves a saturated design d′ with b blocks.

If B1 contains treatment 1, then obviously

Rd =


 R1 0

0 Rd′




where R1 is of form (15) with treatment 1 on plot s, implying |Rd| = |R1||Rd′ | which is

±1 by the induction hypothesis.

If B1 does not contain treatment 1, let s be the position of the linking treatment in

B1, and let the linking treatment be labeled k +1. Without loss of generality and aside

from plot s, treatments 2, . . . , k appear in plot order. For treatments in B1, solutions
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τ̂2, . . . , τ̂k in τ̂(d) involve measurements in B1, but τ̂k+1 does not. By the partial order,

no chain to treatment 1 beginning with a treatment not in B1 involves the differences

arising from B1. These statements say

Rd =


 R1 H

0 Rd′




where again R1 is of form (15), and here H is some nonzero matrix. Again |Rd| =

|R1||Rd′ | = ±1, completing the proof. 2

Corollary 4.3 and lemma 4.4 together produce the main result of this section.

Theorem 4.5 All designs in D(v, b, k) are D-equal, regardless of Σ.

5 E-optimal Design

A design is E-optimal if it minimizes (in d) the maximum eigenvalue of the Moore-

Penrose inverse C†
d of the information matrix Cd. For given d, this eigenvalue is the max-

imum over all normalized contrasts m′τ of var(m̂′τ(d))/σ2. The study of E-optimality

to follow requires the Moore-Penrose inverse C†
d∗ for the design d∗ displayed in (6).

Corollary 5.1 C†
d∗ for design d∗ is

C†d∗ =




b
v2 1′k−1V 1k−1 − 1

v 1′b ⊗ [1′k−1V (Ik−1 − b
v Jk−1)]

− 1
v 1b ⊗ [(Ik−1 − b

v Jk−1)V 1k−1] Ib ⊗ V − 1
v Jb ⊗ (V Jk−1 + Jk−1V ) + b

v2 Jb ⊗ (Jk−1V Jk−1)




where V is the (k − 1) × (k − 1) correlation matrix for the k − 1 simple within-block

differences relative to y1b k+1
2
c for the first block:

V =
1
σ2

Cov(y11 − y1b k+1
2
c, y12 − y1b k+1

2
c, · · · , y1k − y1b k+1

2
c). (16)

Proof This follows from (10) in lemma 4.1, using the solution specified in (14). 2

Theorem 5.2 The largest eigenvalue of C†
d∗ is the largest eigenvalue of the correlation

matrix V in (16).
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Proof After factoring, 0 = λ|V −λIk−1|b−1|V (Ik−1− b
vJk−1)−λIk−1| is the characteris-

tic equation for C†
d∗ . Thus the non-zero eigenvalues of C†

d∗ are the eigenvalues of V with

frequency b− 1 each, and the eigenvalues of V (Ik−1 − b
vJk−1). Since the largest eigen-

value λmax obeys λmax(AB) ≤ λmax(A)λmax(B) for any two positive definite matrices

A and B (e.g. Bhatia, 1997, page 94), and the largest eigenvalue of Ik−1 − b
vJk−1 is 1,

λmax(V (Ik−1 − b

v
Jk−1)) ≤ λmax(V )λmax(Ik−1 − b

v
Jk−1) ≤ λmax(V ). (17)

2

Theorem 5.2 provides the standard for evaluating any design d relative to d∗ in

terms of the E-criterion. If there is a normalized treatment contrast m′τ such that

var(m̂′τ(d))/σ2 is no less than the largest eigenvalue of V , then d cannot be E-superior

to d∗. The question is how to pick such a contrast for an arbitrary d.

Corollary 2.4 says that for any d one can always find two blocks, call them B1 and B2,

sharing a common treatment, call it treatment 1. Setting the estimator for treatment 1

to zero, and labelling the other treatments in these two blocks appropriately, one partial

solution to the reduced normal equations is

τ̂(d) = (0, y11 − y1s, y12 − y1s, · · · , y1,s−1 − y1s, y1,s+1 − y1s, · · · , y1k − y1s,

y21 − y2t, y22 − y2t, · · · , y2,t−1 − y2t, y2,t+1 − y2t, · · · , y2k − y2t, · · ·)′ ,
(18)

where s and t are the positions of treatment 1 in the two blocks. This is a partial

solution in the sense that only the estimators for treatments in B1 and B2 have been

displayed. It will be used to calculate variances for contrasts of treatments in these two

blocks. Let V1 and V2 be the (k-1)×(k-1) correlation matrices

V1 = 1
σ2 Cov(y11 − y1s, y12 − y1s, · · · , y1,s−1 − y1s, y1,s+1 − y1s, · · · , y1k − y1s)

V2 = 1
σ2 Cov(y21 − y2t, y22 − y2t, · · · , y2,t−1 − y2t, y2,t+1 − y2t, · · · , y2k − y2t)

Then the partial expression of Cov(τ̂(d)) corresponding to (18) is:

1
σ2

Cov(τ̂(d)) =




0 0′k−1 0′k−1 0′(b−2)(k−1)

0k−1 V1 0k−1 . . .

0k−1 0k−1 V2 . . .

0(b−2)(k−1) . . . . . . . . .




(19)
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Lemma 5.3 If λmax(V1+V2
2 ) ≥ λmax(V ), then design d cannot be E-superior to d∗.

Proof Suppose the normalized eigenvector corresponding to the largest eigenvalue of
V1+V2

2 is x(k−1)×1. Then from (19), var(m̂′τ(d))/σ2 = m′Cov(τ̂(d))m/σ2 = λmax(V1+V2
2 )

where m is the v × 1 vector specified by m′ = 1√
2
(0, x′,−x′, 01×(v−2k+1)). 2

It also follows that no design with two blocks sharing a treatment at the center position

bk+1
2 c can be E-superior to d∗ (this is just V1 = V2 = V ).

The variance-covariance structure Σ for the entire layout under (3)-(5) can be written

as Σ = Ib⊗Σk where Σk is the k×k within-block covariance matrix. For u = 1, 2, · · · , k
define Hu as the k × k matrix with uth column all 1’s, and all other elements 0’s.

Compute (I −Hu)Σk(I −H
′
u)/σ2, remove the uth row and the uth column, and name

the resulting matrix Γu. Obviously Γu is a positive definite (k− 1)× (k− 1) matrix. In

lemma 5.3, V = Γb k+1
2
c, V1 = Γs, and V2 = Γt. This leads to

Theorem 5.4 Design d∗ is E-optimal if

min(λmax

(
Γu1 + Γu2

2

)
) = λmax(Γb k+1

2
c)

where the minimum is over 1 ≤ u1 ≤ u2 ≤ bk+1
2 c.

Proof This evaluates the eigenvalue bound employed in lemma 5.3 for every pair of

linking positions. Since any d ∈ D must possess two blocks sharing a linking treatment,

the minimum of these quantities is a lower bound for the largest eigenvalue of C†
d. 2

The sufficient condition as stated in Theorem 5.4 is actually one of a family of suffi-

cient conditions for d∗ to be E-optimal. In the set of indices {1, 2, . . . , bk+1
2 c} where u1

and u2 take their values, any member, say u, can be replaced by k+1−u. Consequently,

there are 2b
k+1
2
c sets of sufficient conditions, although some of these are identical. One

of these will be employed in the proof for Corollary 5.6.

Theorem 5.4 provides a method for establishing E-optimality of d∗, but it requires

comparing largest eigenvalues of bk+1
2 c − 1 +

(b k+1
2
c

2

)
matrices to that of Cd∗ , that

is, enumerating all possibilities for u1 and u2 except u1 = u2 = bk+1
2 c. This is an
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analytically impossible task when k is large. That the condition of Theorem 5.4 may

be too strong can been seen if enough ρh are zero, for then Γu = PΓb k+1
2
cP

′ for some

u 6= bk+1
2 c and permutation matrix P , implying the vector of eigenvalues for Γb k+1

2
c

majorizes that of 1
2(Γu +Γb k+1

2
c). A consequence is that d∗ cannot be shown E-superior

by this method even though this Γu is equivalent to Γb k+1
2
c in terms of its contribution

to contrast variances. Theorem 5.4 can nonetheless be used to find E-optimal designs

in particular cases. Below are two examples from Jin (2004). Proofs are in appendix A.

Corollary 5.5 Design d∗ is E-optimal when k = 3.

Corollary 5.6 Design d∗ is E-optimal when k = 4 and the covariance structure is

defined as ρs = ρs for 0 < ρ < 1.

6 Discussion

Spatial correlation of observations has been found to impose positional conditions on

optimal designs. This is not surprising, for much stronger positional balancing is found

in the optimality conditions determined for non-saturated block designs with correlated

errors in papers such as Kunert (1987), Morgan and Chakravarti (1988), Martin and

Eccleston (1991), Bhaumik (1995), and Benchekroun and Chakravarti (1999). What

may be surprising is that regardless of the strength of positive correlation, the unequal

replication found for optimal designs when Σ = σ2I is maintained. The results here hold

uniformly for all correlations, known or unknown, that respect the spatial non-increasing

property (4).

The general prescription of these results is to use the same design known to be op-

timal for uncorrelated measurements, but to place the common treatment at the center

position in all blocks. Among other results, this strategy is shown to be A-optimal,

MV-optimal, and D-optimal. We conjecture that the same strategy is E-optimal, but

have been unable to obtain a proof other than in special cases. Theorem 5.4 captures

the essence of the problem: if the ρh in (4) are all distinct and positive, one needs to get

hold of the maximum eigenvalue for a pair of blocks with arbitrary linking positions.
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This seems to be a complex task for any general correlation structure allowed by (3)

and (4). Even for the 1-dimensional parameterization offered by AR(1) correlations, we

have done no better than proving optimality of d∗ for k ≤ 4. Theorem 5.4 is certainly

adequate, however, from an applied perspective: for given k and feasible correlations,

one can computationally check that the condition for E-optimality of d∗ holds.

Is there a substantial advantage to using d∗ instead of any of the designs that are

optimal when the errors are uncorrelated, that is, instead of an OLS-optimal design?

The first scenario in the proof of Theorem 3.1 makes it clear that d∗ dominates any OLS-

optimal design, other than d∗ itself, whenever the correlations (4) are not all equal. The

strength of this dominance depends on the exact values of the ρh, and on the competitor,

for the performance of an OLS-optimal design monotonically degrades as the position of

the linking treatment in any block is moved further from the center. Since within-block

contrasts are estimated with the same variance for any design, designs can be compared

through their between-blocks variances (7). For d∗ with odd k (even k is similar), the

mean of these (k−1)2 variances is 4[(k−1)−2
∑(k−1)/2

h=1 ρh]/(k−1), while for two blocks

linked at their end plots, the mean is 4[(k − 1) −∑k−1
h=1 ρh]/(k − 1). The ratio of these

two figures can be as large as 1 (when all ρh are equal), but can also be quite small (e.g.

0.5 for k = 3, ρ1 = 0.7, ρ2 = 0.1).
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A Proofs for Corollaries 5.5 and 5.6

Proof for corollary 5.5

Set k = 3 and let the within-block covariance matrix Σk be any matrix allowed by

(3) and (4). Computing (I−H2)Σk(I−H
′
2)/σ2 and deleting its second row and column
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produces Γ2:

Γ2 =


 2− 2ρ1 1− 2ρ1 + ρ2

1− 2ρ1 + ρ2 2− 2ρ1




The eigenvalues of Γ2 are 1 − ρ2 and 3 − 4ρ1 + ρ2, which both must be positive; the

larger is the E-value for d∗. Similarly Γ1 is (I −H1)Σk(I −H
′
1)/σ2 with the first row

and column deleted:

Γ1 =


 2− 2ρ1 1− ρ2

1− ρ2 2− 2ρ2


 .

The largest eigenvalue γ1 of Γ1 is 2−ρ1−ρ2+
√

1 + ρ2
1 − 2ρ2 − 2ρ1ρ2 + 2ρ2

2. Also needed

is Γ1+Γ2
2 , with largest eigenvalue γ1,2 = 1

2 [4− 3ρ1 − ρ2 +
√

4− 8ρ1 + 5ρ2
1 − 2ρ1ρ2 + ρ2

2 ].

With these quantities in hand, it remains to compare the various eigenvalues. For
Γ1+Γ2

2 versus Γ1, compute

γ1,2 − γ1 =
1
2
[
√

4(1− ρ1)2 + (ρ1 − ρ2)2 −
√

4(1− ρ2)2 + 4(ρ1 − ρ2)2 − (ρ1 − ρ2)] ≤ 0.

So it must be shown that Γ2 has largest eigenvalue smaller than γ1,2. Similarly straight-

forward manipulations give 1 − ρ2 − γ1,2 ≤ −(1 − ρ1) < 0, and 3 − 4ρ1 + ρ2 − γ1,2 ≤
−3(ρ1−ρ2)

2 < 0 for ρ1 6= ρ2. 2

Proof for corollary 5.6

Take k = 4 and let the within-block covariance matrix Σk be specified by (3) with

ρ|u−u′| = ρ|u−u′|. The relevant matrix for d∗ is either Γ2 or Γ3. Here Γ3 will be compared

to Γ1 and Γ1,3 ≡ Γ1+Γ3
2 . Explicit expressions for Γ1, Γ3, and Γ1,3, as well as a more

detailed version of this proof, can be found in Jin (2004). The characteristic equations

for these three matrices are

G1(λ) = −2(2− ρ)(1− ρ)3(1 + ρ)2 − (1− ρ)2(1 + ρ)(−9− ρ− 2ρ2 + 2ρ3)λ

+2(−1 + ρ)(3 + 2ρ + ρ2)λ2 + λ3 = 0,

G3(λ) = −2(2− ρ)(1− ρ)3(1 + ρ)2 − (1− ρ)2(1 + ρ)(−9 + ρ− ρ2 + ρ3)λ

−2(1− ρ)(3 + ρ)λ2 + λ3 = 0, and

G1,3(λ) = (1− ρ)3(1 + ρ)(−16− 8ρ− 6ρ2 + 3ρ3 + ρ4)− (1− ρ)2(−36− 36ρ− 19ρ2

−6ρ3 + ρ4)λ− 4(1− ρ)(6 + 3ρ + ρ2)λ2 + 4λ3 = 0.
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Evaluation of G1 shows that G1(0) < 0, G1(1−ρ) > 0, G1(2−2ρ2) < 0, and G1(4) > 0.

So the three roots are within (0, 1−ρ), (1−ρ, 2−2ρ2) and (2−2ρ2, 4) respectively. The

largest eigenvalue of Γ1, say γ1, is within (2 − 2ρ2, 4). Evaluating G3 and G1,3 at the

same four points yields the same strict inequalities, so that the eigenvalues for Γ3 and

Γ1,3 fall in the same intervals. Denoting the largest eigenvalues for these two matrices

by γ3 and γ1,3, then all of γ1, γ3 and γ1,3 are in (2− 2ρ2, 4). Each of G1(γ), G3(γ) and

G1,3(γ) is negative at γ = 2− 2ρ2 and has a single root in γ > 2− 2ρ2.

The three characteristic functions obey

G3(λ) = G1(λ) + λρ(1− ρ2)[2λ− (2− ρ)(1− ρ)(1 + ρ)] (20)

=
G1,3(λ)

4
+

ρ(1− ρ)
4

[4λ2(1 + ρ)− (1− ρ)2(1 + ρ)ρ(−14 + 3ρ + ρ2)

−λ(1− ρ)(4 + 19ρ + 6ρ2 + 3ρ3)]. (21)

Now for γ > 2 − 2ρ2, G3(γ) < 0 ⇒ γ < γ3 and G3(γ) > 0 ⇒ γ > γ3. Using (20) to

evaluate G3 at γ1 ∈ (2− 2ρ2, 4) gives

G3(γ1) = G1(γ1) + γ1ρ(1− ρ2)[2γ1 − (2− ρ)(1− ρ)(1 + ρ)]

> γ1ρ(1− ρ2)[2(2− 2ρ2)− (2− ρ)(1− ρ)(1 + ρ)]

= γ1ρ(1− ρ2)(1− ρ)(1 + ρ)(2 + ρ) > 0,

showing that γ1 > γ3.

Finally, for γ1,3 ∈ (2− 2ρ2, 4), (21) says that G3(γ1,3) = H(γ1,3) where

H(γ) =
ρ(1− ρ)

4
[4γ2(1 + ρ)− (1− ρ)2(1 + ρ)ρ(−14 + 3ρ + ρ2)

−γ(1− ρ)(4 + 19ρ + 6ρ2 + 3ρ3)].

Differentiating H(γ) with respect to γ gives

∂H(γ)
∂γ

=
ρ

4
[8γ(1− ρ2)− (1− ρ)2(4 + 19ρ + 6ρ2 + 3ρ3)]

>
ρ

4
[8(2− 2ρ2)(1− ρ2)− (1− ρ)2(4 + 19ρ + 6ρ2 + 3ρ3)]

=
1
4
(1− ρ)2ρ(12 + 13ρ + 10ρ2 − 3ρ3) > 0

so that H(γ) is increasing in γ > 2− 2ρ2. But H(2− 2ρ2) = 1
4(1− ρ)3ρ(1 + ρ)(8 + 8ρ +

ρ2 − 7ρ3) > 0. Thus G3(γ1,3) > 0 and consequently γ1,3 > γ3. 2
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Additional Results

A few additional results, found after the paper was accepted

Theorem 3.1 can be generalized to include blocks of fixed, but unequal, sizes. Let the

block sizes be k1 ≥ . . . ≥ kb for a saturated setting, that is, n =
∑b

j=1 kj = b + v − 1.

Lemma 2.1 and so corollaries 2.2-2.4 still hold. The proof of Theorem 3.1 depends only

on the blocks having fixed sizes and not on those sizes being equal. Thus M-optimality for

estimation of elementary treatment contrasts holds for d∗ defined to have one treatment

common to every block, appearing on unit bkj+1
2 c in block j. This result for A-optimality

in the uncorrelated case (when the one common treatment can appear in any position in

each block), here extended to all optimality criteria of the form
∑

i

∑
i′>i f(var(τ̂i− τ̂i′))

for nondecreasing f , was established by Das, Dean, and Notz (1998, JSPI 72, 133-147).

If all ρh = 0 (the uncorrelated case), then an optimal design as in the preceding para-

graph for fixed k1 ≥ . . . ≥ kb has only two distinct variances for pairwise comparisons,

the smaller of which is that for a within-blocks elementary treatment contrast. So con-

sider fixing v, b, and thus n = b + v − 1, but otherwise allowing the block sizes to be

arbitrary. The best design in this wider class can be easily determined: it will maximize

the number of pairwise comparisons estimated by within-blocks contrasts. That is, it

will maximize
∑b

j=1

(kj

2

)
. Now a block with only one experimental unit is disconnected

from the other observations and so does not contribute to treatment contrasts estima-

tion. Consequently, a plausible but not necessary restriction is kj ≥ 2 for all j. The only

necessary requirement imposed by fixed b is that kj ≥ 1 for all j. Alternatively, b and

thus n could be allowed to vary subject only to n = b + v− 1; decreasing b is equivalent

to setting some kj to zero, in which case the kj ’s are totally unrestricted. Next listed

are the best designs in each case:

restriction M-best block sizes

fixed b, all kj ≥ 2 k1 = v − b− 1, k2 = . . . kb = 2

fixed b, all kj ≥ 1 k1 = v, k2 = . . . kb = 1

b not fixed b = 1, k1 = v
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The best of all saturated block designs is a single complete block, which is the choice

that minimizes the number of experimental units employed! Of course, one is not always

able to get sufficiently uniform experimental units to comprise a single block of size v.

The bottom line here is that, within whatever limitations are in force in planning a

particular experiment (which may well fix b and preclude a block of size v), one should

choose blocks so as to maximize
∑b

j=1

(kj

2

)
. Note that the second line in the above table

with k2 = . . . , kb = 1, while mathematically correct, is experimentally silly.

We are now exploring the issues for variable block sizes in the correlated case.

It is not hard to see that our results for D-optimality also hold for any fixed k1 ≥ . . . ≥ kb.
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