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Abstract

Let n and k be integers, with n > 1 and k > 0. An (n×n)/k semi-
Latin square S is an n × n array, whose entries are k-subsets of an
nk-set, the set of symbols of S, such that each symbol of S is in exactly
one entry in each row and exactly one entry in each column of S. Semi-
Latin squares form an interesting class of combinatorial objects which
are useful in the design of comparative experiments. We say that
an (n × n)/k semi-Latin square S is uniform if there is a constant
µ such that any two entries of S, not in the same row or column,
intersect in exactly µ symbols (in which case k = µ(n− 1)). We prove
that a uniform (n × n)/k semi-Latin square is Schur-optimal in the
class of (n×n)/k semi-Latin squares, and so is optimal (for use as an
experimental design) with respect to a very wide range of statistical
optimality criteria. We give a simple construction to make an (n×n)/k
semi-Latin square S from a transitive permutation group G of degree n
and order nk, and show how certain properties of S can be determined
from permutation group properties of G. If G is 2-transitive then S is
uniform, and this provides us with Schur-optimal semi-Latin squares
for many values of n and k for which optimal (n × n)/k semi-Latin
squares were previously unknown for any optimality criterion. The
existence of a uniform (n × n)/((n − 1)µ) semi-Latin square for all
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integers µ > 0 is shown to be equivalent to the existence of n − 1
mutually orthogonal Latin squares (MOLS) of order n. Although
there are not even two MOLS of order 6, we construct uniform, and
hence Schur-optimal, (6 × 6)/(5µ) semi-Latin squares for all integers
µ > 1.

1 Introduction

Let n and k be integers, with n > 1 and k > 0. An (n × n)/k semi-Latin
square S is an n×n array, whose entries are k-subsets of an nk-set, the set of
symbols of S, such that each symbol of S is in exactly one entry in each row
and exactly one entry in each column of S. The entry in row i and column
j is called the (i, j)-entry of S and is denoted by S(i, j). We consider two
(n × n)/k semi-Latin squares to be isomorphic if one can be obtained from
the other by applying an isomorphism, which is a sequence of one or more
of: a row permutation, a column permutation, transposing, and renaming
symbols. An automorphism of S is an isomorphism mapping S onto itself.
By identifying a 1-subset of symbols with the symbol it contains, we consider
an (n × n)/1 semi-Latin square to be the same thing as a Latin square of
order n.

For example, here are two nonisomorphic (3 × 3)/2 semi-Latin squares,
both having symbol-set {1, . . . , 6}:

X :=
1 4 2 5 3 6
3 6 1 4 2 5
2 5 3 6 1 4

, Y :=
1 4 2 5 3 6
3 5 1 6 2 4
2 6 3 4 1 5

. (1)

Observe that symbols 2 and 5 occur together in the three entries X(1, 2),
X(2, 3) and X(3, 1) of X, but no pair of distinct symbols occur together in
more than one entry of Y .

Semi-Latin squares form an interesting class of combinatorial objects
which are used in the design of comparative experiments (see [18, 1, 2, 21, 5]).
Moreover, the duals of (n× n)/k semi-Latin squares are certain factorial de-
signs, and optimal (n× n)/k semi-Latin squares dualize to optimal factorial
designs of this type, with respect to a wide range of statistical optimality
criteria (see [5]). However, until now, optimal (n× n)/k semi-Latin squares
were only known (for certain optimality criteria) when there are k mutually
orthogonal Latin squares (MOLS) of order n [11], when there are n−1 MOLS
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of order n and k is a multiple of n − 1 [2], when n = 3 [2], when n = k = 4
[12], and for the classes of “regular-graph” (6× 6)/2 [8] and (6× 6)/3 [22, 5]
semi-Latin squares.

In this paper, we introduce the concept of a uniform semi-Latin square.
An (n×n)/k semi-Latin square S is uniform if there is a constant µ = µ(S)
such that any two entries of S, not in the same row or column, intersect in
exactly µ symbols. For example, the semi-Latin square Y in (1) is uniform,
with µ(Y ) = 1. We prove that a uniform (n × n)/k semi-Latin square is
Schur-optimal (defined in Section 2) in the class of (n × n)/k semi-Latin
squares, and so, in particular, is Φp-optimal, for all p ∈ (0,∞), as well as A-,
D-, and E-optimal in that class (see [15, 6]).

We shall give a simple construction to make an (n × n)/k semi-Latin
square S from a transitive permutation group G of degree n and order nk,
and show how certain properties of S can be determined from permutation
group properties of G. If G is 2-transitive then S is uniform, and this provides
us with Schur-optimal semi-Latin squares for many values of n and k for
which optimal (n × n)/k semi-Latin squares were previously unknown for
any optimality criterion.

The existence of a uniform (n × n)/((n − 1)µ) semi-Latin square for all
integers µ > 0 is shown to be equivalent to the existence of n − 1 MOLS of
order n. Although there are not even two MOLS of order 6, we construct
uniform, and hence Schur-optimal, (6 × 6)/(5µ) semi-Latin squares for all
integers µ > 1.

The reader who is unfamiliar with statistical design theory and the theory
of optimal designs should consult the excellent survey article [6], which was
written for combinatorialists. Other useful references for these topics include
[20, 3, 4, 10]. An excellent reference for permutation groups is [9].

2 Block designs and Schur-optimality

In this Section, we collect definitions we will need for block designs and
Schur-optimality.

A block design is an ordered pair (V,B), such that V is a finite non-
empty set of points, and B is a (disjoint from V ) finite non-empty collection
(or multiset) of non-empty subsets of V called blocks, such that every point
is in at least one block. Thus, all our block designs are “binary” in that no
block can have a repeated point, but we certainly allow repeated blocks, and
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repeated blocks are counted in any count of blocks. A 1-(v, k, r) design is a
block design having exactly v points, with each block having size k and with
each point in exactly r blocks.

If we ignore the row and column structure of an (n × n)/k semi-Latin
square S, we obtain its underlying block design (or quotient block design [2]),
denoted ∆(S), the block design whose points are the symbols of S and whose
block multiset is [S(i, j) : 1 ≤ i, j ≤ n]. Note that ∆(S) is a 1-(nk, k, n)
design.

Let ∆ be a block design having v points and b blocks. The point graph of
∆ is the graph whose vertices are the points of ∆, and with {α, β} an edge
precisely when points α and β are distinct and both in some block of ∆. We
say that ∆ is connected if its point graph is connected, and that a semi-Latin
square is connected if its underlying block design is connected. Thus, for the
examples in (1), we see that X is not connected and Y is connected. The
incidence matrix of ∆ is the v × b matrix whose rows are indexed by the
points of ∆ and columns by the blocks of ∆, with the (α, B)-entry being 1 if
the point α is in the block B, and 0 otherwise. The dual of ∆ is obtained by
interchanging the roles of points and blocks, and is defined to be the block
design whose incidence matrix is the transpose of that of ∆. Note that the
dual of a 1-(v, k, r) design is a 1-(vr/k, r, k) design. The concurrence matrix
of ∆ is the v × v matrix whose rows and columns are indexed by the points,
and whose (α, β)-entry is the number of blocks containing both α and β.
Note that if N is the incidence matrix of ∆, then its concurrence matrix
is NNT, and the concurrence matrix of the dual of ∆ is NTN (where NT

denotes the transpose of N).
Now suppose ∆ is a 1-(v, k, r) design with incidence matrix N . The

information matrix of ∆ is

C(∆) := rIv − k−1NNT.

The eigenvalues of this information matrix are all real and lie in the interval
[0, r]. At least one eigenvalue is zero: an associated eigenvector is the all-1
vector. The remaining eigenvalues are all non-zero if and only if ∆ is con-
nected. (See, for example, [6].) Let δ0 ≤ δ1 ≤ · · · ≤ δv−1 be the eigenvalues
of C(∆). We say that ∆ is Schur-optimal in a class C of 1-(v, k, r) designs
containing ∆ if ∆ is connected and for each design Γ ∈ C, with information
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matrix C(Γ) having eigenvalues γ0 ≤ γ1 ≤ · · · ≤ γv−1, we have:

∑̀
i=0

δi ≥
∑̀
i=0

γi, for ` = 0, 1, . . . , v − 1.

A Schur-optimal design need not exist within a given class C, but when
it does, that design is optimal in C with respect to a very wide range of
statistical optimality criteria, including being Φp-optimal, for all p ∈ (0,∞),
and also A- D- and E-optimal. This was proved in [15]; see also [6, 20] for
definitions of these optimality criteria and more on this result.

Following the analysis in [2], we consider an (n× n)/k semi-Latin square
to be optimal with respect to a given optimality criterion if and only if its
underlying block design is optimal with respect to that criterion in the class
of underlying block designs of (n×n)/k semi-Latin squares. In particular, an
(n×n)/k semi-Latin square is Schur-optimal if its underlying block design is
Schur-optimal in the class of underlying block designs of (n×n)/k semi-Latin
squares.

3 Uniform semi-Latin squares

Recall that a semi-Latin square S is uniform if there is a constant µ = µ(S)
such that any two entries of S, not in the same row or column, intersect in
exactly µ symbols.

Lemma 3.1 If S is a uniform (n × n)/k semi-Latin square then µ(S) =
k/(n− 1), and in particular, n− 1 divides k.

Proof. Let S be a uniform (n × n)/k semi-Latin square, and let i, j ∈
{1, . . . , n}. We count in two ways the number of triples (i′, j′, α), such that
i′, j′ ∈ {1, . . . , n}, i′ 6= i, j′ 6= j, and α ∈ S(i, j) ∩ S(i′, j′). We get that
(n− 1)2µ(S) = k(n− 1), and the result follows.

Let s be a positive integer. An s-fold inflation of an (n×n)/k semi-Latin
square is obtained by replacing each symbol α in the semi-Latin square by s
symbols σα,1, . . . , σα,s, such that σα,i = σβ,j if and only if α = β and i = j.
The result is an (n× n)/(ks) semi-Latin square. For example, the square X
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in (1) is a 2-fold inflation of

1 2 3
3 1 2
2 3 1

.

The superposition of an (n × n)/k semi-Latin square with an (n × n)/`
semi-Latin square (with disjoint symbol sets) is obtained by superimposing
the first square upon the second, giving an (n×n)/(k+`) semi-Latin square.
For example, the square Y in (1) is the superposition of

1 2 3
3 1 2
2 3 1

and
4 5 6
5 6 4
6 4 5

.

Lemma 3.2 If S is a uniform semi-Latin square then an s-fold inflation of
S is also uniform, and if S and T are both n×n uniform semi-Latin squares
(with disjoint symbol sets) then the superposition of S and T is also uniform.

Proof. Straightforward.

Theorem 3.3 An (n × n)/(n − 1) semi-Latin square S is uniform if and
only if S is a superposition of n− 1 MOLS of order n.

Proof. Suppose S is a uniform (n × n)/(n − 1) semi-Latin square. By
Lemma 3.1, µ(S) = 1, so any two entries of S in different positions meet in 0
or 1 points, so every pair of distinct symbols of S occur together in at most
one entry. Bailey [2, Theorem 6.4] shows that an (n× n)/(n− 1) semi-Latin
square with this property must be a superposition of n − 1 MOLS of order
n.

Conversely, suppose S is a superposition of n− 1 MOLS of order n, and
consider entries S(i, j) and S(i′, j′) of S, with i 6= i′ and j 6= j′. Now
|S(i, j) ∩ S(i′, j′)| ≤ 1, for otherwise there would be two (or more) symbols
from orthogonal Latin squares occurring together in more than one entry of
S, and this cannot happen. Now each of the n − 1 symbols in S(i, j) must
occur in row i′, no two of these can occur together in any entry in this row,
and none can occur in column j, so we must have |S(i, j) ∩ S(i′, j′)| = 1.
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Uniform semi-Latin squares can thus be seen as generalizing the concept
of complete sets of MOLS (i.e. sets of n − 1 MOLS of order n). Since the
µ-fold inflation of a uniform semi-Latin square is uniform, we see that the
existence of a uniform (n × n)/((n − 1)µ) semi-Latin square for all integers
µ > 0 is equivalent to the existence of a complete set of MOLS of order n, and
such a set exists if n is a prime power. It is a major unsolved problem whether
such a set exists for some n not a prime power, so when n is not a prime
power the existence question for a uniform (n × n)/((n − 1)µ) semi-Latin
square for a given µ can be very difficult indeed.

The statistical importance of uniform semi-Latin squares comes from the
following theorem. We have excluded the case n = 2 since each (2 × 2)/k
semi-Latin square is a k-fold inflation of a Latin square of order 2, and is not
connected.

Theorem 3.4 Let n > 2 and let S be a uniform (n × n)/k semi-Latin
square. Then S is Schur-optimal; that is, the underlying block design of S is
Schur-optimal in the class of underlying block designs of (n×n)/k semi-Latin
squares.

Proof. Let ∆ be the underlying block design of S, let N be the incidence
matrix of ∆, and let i, j, i′, j′ ∈ {1, . . . , n}, with (i, j) 6= (i′, j′). If i = i′ or
j = j′ then |S(i, j)∩S(i′, j′)| = 0, and otherwise |S(i, j)∩S(i′, j′)| = µ(S) =
k/(n − 1). Thus the dual ∆∗ of ∆ is a partially balanced incomplete-block
design with respect to the L2-type association scheme, so it is straightfor-
ward to work out the eigenvalues and their multiplicities for the concurrence
matrix NTN of ∆∗ (see, for example, [25]). These eigenvalues are nk with
multiplicity 1, nk/(n− 1) with multiplicity (n− 1)2, and 0 with multiplicity
2n − 2. The non-zero eigenvalues of NTN , as well as their multiplicities,
are the same as for NNT. It follows that the eigenvalues δ0, . . . , δnk−1 of the
information matrix C(∆) := nInk − k−1NNT of ∆, in non-decreasing order,
satisfy:

0 = δ0 < n− n/(n− 1) = δ1 = · · · = δ(n−1)2 < n = δ(n−1)2+1 = · · · = δnk−1.

Note that, since S is uniform and n > 2, we have nk − 1 ≥ n(n − 1) − 1 >
(n− 1)2.

Now let R be any (n × n)/k semi-Latin square, let Γ∗ be the dual block
design of the underlying block design Γ of R, and let M be the incidence
matrix of Γ. The rows and columns of the concurrence matrix MTM of Γ∗
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are indexed by the n2 entries of R, with the (R(i, j), R(i′, j′))-entry of MTM
being |R(i, j) ∩ R(i′, j′)|. Now consider a row r of MTM . If we just look
at the positions in r indexed by the n entries in a given row (or column) of
R, then the values in these positions sum to k. Thus the n2-vector having
n− 1 in these positions and −1 elsewhere is in the null space of MTM . Such
null vectors corresponding to the rows of R span an (n− 1)-space (they sum
to 0), and such null vectors correponding to the columns of R span another
n − 1 space, and these two spaces have trivial intersection. Thus the null
space of MTM has dimension at least 2n− 2, and so the rank of both MTM
and MMT is at most (n−1)2 +1. It follows that the eigenvalues γ0, . . . γnk−1

of the information matrix C(Γ) := nInk − k−1MMT of Γ, in non-decreasing
order, satisfy:

0 = γ0 ≤ γ1 ≤ · · · ≤ γ(n−1)2 ≤ n = γ(n−1)2+1 = · · · = γnk−1.

Now suppose that for some ` ∈ {0, 1, . . . , nk − 1} we have
∑`

i=0 δi <∑`
i=0 γi, and choose ` to be the least index with this property. Then δ` < γ`

and 0 < ` ≤ (n − 1)2. Moreover, for j = `, . . . , (n − 1)2, the δj are con-
stant and the γj are non-decreasing, and for j = (n − 1)2 + 1, . . . , nk − 1,

δj = γj = n, and so
∑nk−1

i=0 δi <
∑nk−1

i=0 γi. But this contradicts the fact that
the sums of the eigenvalues of C(∆) and C(Γ) are the same (both informa-
tion matrices have trace n2(k− 1)). We conclude that ∆ is Schur-optimal in
the class of underlying block designs of (n×n)/k semi-Latin squares, and we
are done. (We note that a similar, and simpler, argument shows that ∆∗ is
Schur-optimal in the class of duals of underlying block designs of (n× n)/k
semi-Latin squares.)

Remark 3.5 The proof of Theorem 3.4 could be shortened, but made less
self-contained and explicit, as follows. After determining the eigenvalues and
their multiplicities for C(∆), we may observe that S is “maximally balanced”
in the sense of [1, Section 4]. The result then follows from [7, Theorem 3.3].

Remark 3.6 Theorem 3.4 generalizes Theorem 5.4 of [2], where it is shown
that if S is the superposition of n−1 MOLS of order n, or an s-fold inflation
of such a superposition, then S is A-, D-, and E-optimal among semi-Latin
squares of the same size as S. Bailey remarks in [5] that this extends to
Φp-optimality for all p ∈ (0,∞), which is also covered by our result.
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4 Semi-Latin squares from transitive permu-

tation groups

We now present a simple construction to obtain a semi-Latin square from
a transitive permutation group. The construction applied to a 2-transitive
group yields a uniform semi-Latin square. First, we give some definitions.

A permutation group G on a finite set Ω of points is a subgroup of the
group of all permutations of Ω. If |Ω| = n then we say that G has degree n.
The symmetric group of degree n, denoted Sn, is the group of all permutations
of {1, . . . , n}. A permutation group G on Ω is transitive if for every i, j ∈ Ω
there is a g ∈ G with ig = j (our permutations act on the right), and G is
2-transitive if for every i, i′, j, j′ ∈ Ω with i 6= i′ and j 6= j′, there is a g ∈ G
with ig = j and i′g = j′. A permutation group is regular if it is transitive
and no non-identity element fixes a point. Note that a regular permutation
group of degree n has order n. A Frobenius group is a transitive permutation
group such that each non-identity element fixes at most one point.

Let n and k be integers, with n > 1 and k > 0, and let P be a set
of nk permutations of {1, . . . , n}, such that, for all i, j ∈ {1, . . . , n} there
are exactly k elements of P mapping i to j. Then P determines a unique
(n×n)/k semi-Latin square, denoted SLS(P ), with symbol-set P , and whose
(i, j)-entry consists precisely of those p ∈ P with ip = j.

Now let G be a transitive permutation group on {1, . . . , n}, with n > 1.
For all i, j ∈ {1, . . . , n}, there are exactly |G|/n elements of G mapping i
to j (the elements mapping i to j are precisely those in h−1G1hg, where h
is any element of G with 1h = i, G1 is the stabilizer in G of 1, and g is
any element of G with ig = j). Thus, the set of elements of G define an
(n×n)/k semi-Latin square SLS(G), with k = |G|/n. For example, SLS(S3)
is isomorphic to the square Y in (1).

Theorem 4.1 Let G be a transitive permutation group on {1, . . . , n}, with
n > 1, and let S := SLS(G).

1. Let H be a transitive subgroup of G. Then S is the superposition
of |G|/|H| (n × n)/(|H|/n) semi-Latin squares, each isomorphic to
SLS(H). In particular, if H is regular then S is a superposition of
Latin squares, each isomorphic to SLS(H).

2. The group G contains a non-identity element with exactly f fixed points
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if and only if there are two distinct symbols of S which occur together
in exactly f entries of S.

3. G is a Frobenius group if and only if S is a superposition of MOLS.

4. G is 2-transitive if and only if S is uniform.

Proof.

1. Let i and j be elements of {1, . . . , n}, g ∈ G and h ∈ H. There
are exactly |H|/n elements of H mapping i to jg−1

, and so there are
exactly |H|/n elements of the right coset Hg mapping i to j. We thus
obtain an (n × n)/(|H|/n) semi-Latin square SLS(Hg), which can be
formed from SLS(H) by first permuting its columns by g (so if ig = j
then the current i-th column becomes the new j-th column), and then
right multiplying each symbol by g. Thus, if {Hg1, . . . , Hgm} is the
partition of G into the m := |G|/|H| right cosets of H, then S is
the superposition of SLS(Hg1), . . . , SLS(Hgm), and these semi-Latin
squares are all isomorphic to SLS(H).

We remark that a similar argument works just as well for the left cosets
of H in G, with SLS(gH) obtained from SLS(H) by permuting its rows
by g−1 and then left multiplying each symbol by g.

2. Suppose g is a non-identity element of G, and g has exactly f fixed
points. Then g occurs together with the identity element of G in exactly
f entries of S.

Conversely, suppose g and h are distinct elements of G occurring to-
gether in exactly f entries of S. Then there are exactly f points
i ∈ {1, . . . , n} with ig = ih, and so gh−1 is a non-identity element
of G having exactly f fixed points.

3. Suppose G is a Frobenius group. By Frobenius’ Theorem [9, Theo-
rem 2.1], G has a regular (normal) subgroup, and so by part 1 above,
S is a superposition of Latin squares. Since G is a Frobenius group,
only the identity element fixes more than one point, so by part 2, each
pair of distinct symbols of S occur together in at most one entry of S.
It follows that a superposition of Latin squares forming S must be a
superposition of MOLS.
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Conversely, if S is a superposition of MOLS, then each pair of distinct
symbols of S occur together in at most one entry of S, and so by part 2,
no non-identity element of G fixes more than one point, and so G is a
Frobenius group.

4. Suppose G is 2-transitive. Then for every i, i′, j, j′ ∈ {1, . . . , n} with
i 6= i′ and j 6= j′, there are precisely µ := |G|/(n(n−1)) elements g ∈ G
with ig = j and i′g = j′. Thus, S(i, j) and S(i′, j′) intersect in exactly
these µ elements, and so S is uniform.

Conversely, suppose S is uniform. Then if i, i′, j, j′ ∈ {1, . . . , n} with
i 6= i′ and j 6= j′, then S(i, j) and S(i′, j′) intersect in µ := k/(n−1) > 0
symbols (recall that n > 1, k > 0), so there is an element of G mapping
i to j and i′ to j′. Thus G is 2-transitive.

Remark 4.2 An equivalent construction to ours in the case of 2-transitive
permutation groups is given in [24], where the interest is in producing effi-
cient partially balanced incomplete-block designs with respect to rectangular
association schemes. Semi-Latin squares, their optimality, or that of their
duals, are not considered in [24].

Using the Classification of Finite Simple Groups, all the finite 2-transitive
permutation groups have been classified (see [9, Section 4.8]), and tables of
these groups are given in Sections 7.3 and 7.4 of [9]. Each 2-transitive group
G gives rise to a uniform semi-Latin square SLS(G), certain properties of
which can be deduced from properties of G. For example, consideration of
the groups PGL2(q) and PSL2(q), of degree q +1, where q is a prime power,
yields the following result.

Theorem 4.3 Let q be a prime power. Then there exists a uniform, and
hence Schur-optimal, ((q+1)× (q+1))/(q(q−1)) semi-Latin square S which
is the superposition of isomorphic Latin squares and in which every pair of
distinct symbols occur together in at most two entries. Moreover, if q is odd
then S is also the superposition of two isomorphic uniform ((q + 1) × (q +
1))/(q(q − 1)/2) semi-Latin squares.
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Proof. The proof is an application of Theorem 4.1.
Let G := PGL2(q) in its natural 2-transitive action of degree q+1 (coming

from the the action of GL2(q) on the 1-spaces of GF (q)2), and let S :=
SLS(G). Then |G| = (q + 1)q(q − 1), and so S is a uniform ((q + 1) × (q +
1))/(q(q−1)) semi-Latin square. The only element of G fixing three (or more)
points is the identity (in fact, when q > 2, G is a “sharply 3-transitive group”
(see [9])). Thus every pair of distinct symbols of S occur together in at most
two entries. Moreover, G has a regular cyclic subgroup [17, Theorem 27.6],
generated by a so-called Singer cycle, and so, by part 1 of Theorem 4.1, S is
the superposition of isomorphic Latin squares.

If q is odd then G has a 2-transitive subgroup PSL2(q) of index 2, and so
S is also the superposition of two isomorphic uniform ((q+1)×(q+1))/(q(q−
1)/2) semi-Latin squares.

4.1 More on SLS(G)

In this subsection, we record further results of interest on the semi-Latin
squares of the form SLS(G), where G is a transitive, but not necessarily 2-
transitive, permutation group. The final section does not depend on these
results.

We start by defining certain operations which may be applied (on the
right) to any semi-Latin square of the form SLS(P ), where P is a set of
permutations of {1, . . . , n}. It is easy to see that all these operations are
isomorphisms.

• Where g ∈ Sn, the operation ρg permutes the rows according to g (so
that, if ig = j, then the current row i becomes the new row j) and then
left multiplies each symbol by g−1.

• Where g ∈ Sn, the operation γg permutes the columns according to g
(so that, if ig = j, then the current column i becomes the new column
j) and then right multiplies each symbol by g.

• The operation τ transposes the square and then inverts each symbol.

Note that, for all g, h ∈ Sn, the operations ρg and γh commute, τ 2 is the
identity, and τρgγh = ρhγgτ . Moreover, if P is a group and g ∈ P , then ρg,
γg and τ are all automorphisms of SLS(P ).
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Theorem 4.4 Let G be a transitive permutation group on {1, . . . , n}, and let
S := SLS(G). Then S is connected if and only if G has no normal subgroup
N satisfying G1 ≤ N 6= G.

Proof. Let Γ be the point graph of the underlying block design of S.
We first suppose that S is not connected, so Γ is not connected, and let N

be the set of vertices of the connected component of Γ containing the identity
element 1G of G. (Recall that the vertices of Γ are the symbols of S, which
are the elements of G.) Now 1G is in the (1, 1)-entry of S, together with all
the other elements of G1, the stabilizer in G of 1, and so G1 is a subset of
N , which is not equal to G. We shall show that N is a subgroup of G and is
normal in G.

Let x ∈ N . Then, since γx is an automorphism of S, we have that Nx is
the vertex-set of some connected component of Γ. This component contains
the vertex 1Gx = x ∈ N , so this component must be the one with vertex-set
N . We conclude that Nx = N for all x ∈ N , and so N is a subgroup of G.
Now let g ∈ G. Then ρgγg is an automorphism of S and so g−1Ng is the
vertex-set of the connected component of Γ containing g−11Gg = 1G ∈ N , so
this component must be the one with vertex-set N . Thus g−1Ng = N for all
g ∈ G, and so N is normal in G.

Conversely, suppose that N is a normal subgroup of G, with G1 ≤ N 6= G.
For each i = 1, . . . , n, the stabilizer Gi of i is conjugate in G to G1, and so
each Gi is contained in N , and so no element of G not in N fixes a point.
Thus, if x ∈ N and y ∈ G \N , then g := xy−1 6∈ N , so g has no fixed points
and so there is no edge joining x and y in Γ. Thus no element of N is joined
by an edge to any element of G \ N , so Γ is not connected, and so S is not
connected.

We now determine the automorphism group of a semi-Latin square of the
form SLS(G). We use ATLAS notation [13] for group structures.

Theorem 4.5 Let G be a transitive permutation group on {1, . . . , n}, and
let S := SLS(G). Then the automorphism group of S has structure

(G×G).((NSn(G)/G)× C2),

where NSn(G) is the normalizer in Sn of G, and C2 is the cyclic group of
order 2. This automorphism group acts transitively on the symbols of S, on
the Cartesian product of the rows and columns of S, and on the union of the
rows and columns of S.
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Proof. Let A be the group of all automorphisms of S. Since no two distinct
symbols of S (i.e. distinct permutations in G) occupy exactly the same set
of positions in S, we see that an automorphism of S is uniquely determined
by its action on the rows and columns of S, and so A is a subgroup of the
group (R× C)〈τ〉, where R := {ρg : g ∈ Sn} and C := {γg : g ∈ Sn}.

We first note that τ ∈ A, and consider B := A∩(R×C). Let ρxγy ∈ R×C.
Then ρxγy ∈ A if and only if x−1Gy = G, in which case x−11Gy = g, for some
g ∈ G, and we have y = xg. Thus ρxγy ∈ A implies that for some g ∈ G,
x−1hxg ∈ G for all h ∈ G, and so x ∈ NSn(G). Thus B is contained in the
group H generated by

{ρxγx : x ∈ NSn(G)} ∪ {ρ1G
γg : g ∈ G}.

But for each generator ρaγb of H, we have a−1Gb = G, so B = H. Thus
A = B〈τ〉 = H〈τ〉, which has structure (G×G).((NSn(G)/G)× C2).

We complete the proof by showing how A acts transitively on various
sets. Let g, h ∈ G be symbols of S. Then the automorphism γg−1h maps g
to h. Let i, j, i′, j′ ∈ {1, . . . , n}. Since G is transitive on {1, . . . , n}, there are
elements g, h ∈ G with ig = i′ and jh = j′. Thus, the automorphism ρgγh

maps row i and column j respectively to row i′ and column j′. In particular,
A can map any row to any row and any column to any column, and since τ
interchanges the rows and columns, we have that A acts transitively on the
union of the rows and columns of S.

5 Uniform (6 × 6)/(5µ) semi-Latin squares for

all µ > 1

In this Section, we provide a constructive proof of the following:

Theorem 5.1 There exist uniform, and hence Schur-optimal, (6 × 6)/(5µ)
semi-Latin squares for all integers µ > 1.

Proof. If µ is even, then we take the µ/2-fold inflation of the uniform
(6× 6)/10 semi-Latin square SLS(PSL2(5)).
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If µ = 3, then we take the semi-Latin square T , whose columns are listed
below:

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85
2 10 15 23 30 34 39 45 53 56 65 72 78 80 88
3 8 17 20 28 32 40 47 54 60 63 69 77 82 90
4 11 14 24 29 33 38 48 50 57 64 70 75 84 89
5 9 16 21 27 36 42 44 52 59 66 68 76 83 86
6 12 18 22 26 35 41 46 51 58 62 71 74 81 87

,

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86
1 7 13 24 29 35 42 46 52 60 63 69 76 81 89
4 9 18 23 27 36 37 43 53 58 65 70 73 84 87
5 12 15 19 28 31 40 45 51 59 66 71 78 82 85
6 10 17 22 30 33 41 47 54 57 61 67 75 79 88
3 11 16 21 25 34 39 48 49 55 64 72 77 83 90

,

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87
4 12 17 19 25 31 41 44 54 58 64 68 77 84 86
1 7 13 22 30 34 38 48 50 59 66 71 74 83 88
6 8 16 23 26 32 42 46 53 55 65 67 76 79 90
2 11 18 24 28 35 40 43 49 56 62 72 73 82 89
5 10 14 20 29 36 37 47 52 60 61 70 78 80 85

,

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88
5 8 18 20 26 33 37 43 49 57 66 71 75 83 90
6 11 15 24 29 35 39 44 51 55 61 68 78 79 86
1 7 13 21 27 36 41 47 54 56 62 72 77 80 87
3 12 14 23 25 31 38 48 53 60 65 69 74 81 85
2 9 17 19 30 32 42 45 50 59 63 67 73 84 89

,

5 11 17 23 29 35 41 47 53 59 65 71 77 83 89
6 9 14 21 28 36 40 48 50 55 61 67 74 82 87
2 12 16 19 25 33 42 46 52 57 62 72 75 80 85
3 10 18 22 30 34 37 44 49 60 63 68 73 81 86
1 7 13 20 26 32 39 45 51 58 64 70 78 84 90
4 8 15 24 27 31 38 43 54 56 66 69 76 79 88

,
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6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
3 11 16 22 27 32 38 47 51 59 62 70 73 79 85
5 10 14 21 26 31 41 45 49 56 64 67 76 81 89
2 9 17 20 25 35 39 43 52 58 61 69 74 83 88
4 8 15 19 29 34 37 46 50 55 63 71 77 80 87
1 7 13 23 28 33 40 44 53 57 65 68 75 82 86

.

(The semi-Latin square T was discovered and studied using the DESIGN pack-
age [23] for GAP [14]. Up to isomorphism, T is the unique uniform (6×6)/15
semi-Latin square having a group of automorphisms of order 25. In fact, the
image of the (full) automorphism group of T acting on the rows and columns
of T has order 200. In addition, T is the superposition of 15 Latin squares,
which have respective symbol-sets {1, . . . , 6}, {7, . . . , 12}, . . . , {85, . . . , 90}.)

Finally, if µ is odd and µ > 3, then we take the superposition of T with
the (µ− 3)/2-fold inflation of SLS(PSL2(5)).

Thus, when n is a prime power or n = 6, we know precisely the values
of µ for which there exists a uniform (n × n)/(µ(n − 1)) semi-Latin square,
but we do not know exactly which values of µ have this property for any
other n > 1. The first unsettled case is n = 10. There is no projective plane
of order 10 [16, 19], so there do not exist nine MOLS of order 10, and so a
uniform (10 × 10)/9 semi-Latin square does not exist. On the other hand,
SLS(PSL2(9)) and inflations of this square yield uniform (10 × 10)/(9µ)
semi-Latin squares for µ = 4, 8, 12, 16, . . ..
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