
Computing with graphs and groups

Leonard H. Soicher

1. Introduction

2. Permutation group algorithms

3. Storing and accessing a G-graph

4. Constructing G-graphs

5. G-breadth-first search in a G-graph

6. Automorphism groups and graph isomorphism

7. Computing with vertex-transitive graphs

8. Coset enumeration

9. Coset enumeration in the study of symmetric graphs

Abstract

In this chapter we discuss the computational study of graphs with
groups acting on them, and demonstrate various ways in which com-
putational group theoretical methods are used in the study of graphs
and groups. We place particular emphasis on the ideas and methods
behind the GRAPE and nauty computer packages.

1 Introduction

The study of graphs with groups acting on them is the study of G-graphs. A
G-graph G = (G,G, φ) consists of a (di)graph G, a group G, and a homomor-
phism φ : G → Aut(G). (The study of graphs without groups acting on them
is just the special case of G-graphs for which G is the trivial group.) G-graphs

1



arise naturally in many areas, most obviously in the study of graphs related
to permutation groups, but also in the study of finite geometries and designs.

An example of a G-graph (where G is the symmetric group Sn) is the
Johnson graph J(n, k), defined to be the graph whose vertex set consists
of all k-subsets of {1, . . . , n}, with vertex v adjacent to vertex w exactly
when |v ∩ w| = k − 1. Now J(n, k) is an Sn-graph (J(n, k),Sn, φ), where, if
v = {i1, . . . , ik} is a vertex of J(n, k) and x ∈ Sn, then vφ(x) = {i1x, . . . , ikx}.

The GAP [13] package GRAPE [38] is designed for computing with G-
graphs, and in particular, makes use of the group G acting on a G-graph
G in order to construct, store, and compute with G efficiently. The nauty
[26] package contains the most powerful programs available for computing
automorphism groups of graphs and testing graph isomorphism; nauty is
available as a standalone package or may be used from within GRAPE or
Magma [27].

There are many computer systems that are useful for studying graphs
and groups which we do not discuss here. These include the algebra system
Magma, which supports computation with graphs and includes the nauty
package, the CoCo package [11] for computing with coherent configurations
(see [5, 12]), and W. Kocay’s package Groups & Graphs [21] (for Macintosh
and Windows), which includes a graphical user interface to compute with
graphs, geometric configurations, combinatorial designs, and their automor-
phism groups. Also worth mentioning are the algorithms of S. Rees and the
author for computing fundamental groups and covers of combinatorial cell
complexes, and which have been implemented for simplicial complexes [32].

This chapter is organized as follows. We first describe basic algorithms for
permutation groups that are used in the study of G-graphs. We then discuss
the efficient storage and construction of G-graphs, and how to use a modified
form of breadth-first search to determine efficiently many properties of a G-
graph. Following that, we concentrate on the methods used by nauty. Next,
we discuss the application of computational methods to the study of vertex-
transitive graphs. Then, after a brief discussion of the coset enumeration
procedure, we describe some applications of coset enumeration to the study
of symmetric graphs.

Throughout this chapter, a digraph is allowed to have loops (but no
multiple arcs), and by the adjacency set G(v) of a vertex v in a (di)graph G
we mean the set of all vertices w such that (v, w) is an arc of G.

2



2 Permutation group algorithms

In this section, we describe some basic permutation group algorithms that
are important in the study of G-graphs; more detailed elementary expositions
can be found in [4, 9], and a comprehensive treatment of the state of the art
in permutation group algorithms is the book by Seress [33]. Throughout this
section, V is a finite set of size n, and we are computing with the permutation
group G given by a generating set X of permutations of V . The image of
v ∈ V under the permutation x of V is denoted by vx.

2.1 Orbits and Schreier vectors

Let v ∈ V . The orbit of v under G is the set vG = {vg : g ∈ G}. The
calculation of all of the orbits {vG : v ∈ V } of G = 〈X〉 is equivalent to
determining the connected components of the ‘Schreier graph’ with respect
to X for G acting on V . This Schreier graph S(V,X) is a digraph with
vertex set V , with (v, w) an arc exactly when vx = w, for some x ∈ X. A set
of rooted directed spanning trees of the connected components of S(V,X)
describes a set R of orbit representatives (the roots) and their G-orbits (the
vertices in each tree). These trees are called Schreier trees, and we always
direct a Schreier tree so that the direction of each arc is away from the root.
A set of Schreier trees can be compactly encoded using a ‘Schreier vector’,
usually implemented as an array. A Schreier vector s = s(V,X) for a set R
of orbit representatives and a set of Schreier trees in S(V,X) that they root,
is a map

s : V → {0} ∪X,

such that s(v) = 0 if v ∈ R, and s(v) = x ∈ X means that (vx−1, v) is an
arc of one of the Schreier trees (so vx−1 is the ‘parent’ of v in that tree).

The computation of a single orbit rG and the definition of the Schreier
vector entries s(v) for the v in this orbit is usually done using a breadth-first
search of the connected component containing r. We first define s(r) = 0,
and perform the breadth-first search outwards from r, finding the adjacency
set of a vertex u by applying each element of X to u. Whenever we encounter
a new vertex v in our breadth-first search, say by applying x to u, we define
s(v) = x.

If we are given a Schreier vector s = s(V,X) and a point v ∈ V , we
can then determine a pair (r,w) for which r is the root of the Schreier tree

3



containing v, and w is a word in X such that rw = v. This calculation
proceeds as follows:

1. w := emptyword; r := v; x := s(r);

2. while x 6= 0 do w := xw; r := rx−1; x := s(r); end do;

On completion, (r,w) is the required pair.
Some brief remarks are in order. We do not keep evaluating the inverses

of elements of X, since we either make X inverse-closed, and so can access
directly the inverse of a generator in X, or we compute rx−1 by tracing r
through its cycle in x until we find the point mapped to r by x. Finally, note
that our definition of a Schreier vector (for all the orbits of a group at once)
is not the usual one.

2.2 Bases and strong generating sets

A sequence B = (b1, . . . , bm) of elements of V is a base for G if the (pointwise)
stabilizer GB of B is the trivial group. A base B defines a chain

G = G(1) ≥ G(2) ≥ · · · ≥ G(m) ≥ G(m+1) = {1}

of subgroups of G, such that G(i) is the (pointwise) stabilizer of (b1, . . . , bi−1).
We observe that

|G| =
m∏
i=1

|G(i) : G(i+1)| and |G(i) : G(i+1)| = |biG(i)|.

A strong generating set for G, relative to B, is a generating set Y for G with
the property that

〈Y ∩ G(i)〉 = G(i), for i = 1, . . . ,m+ 1.

Given a strong generating set relative to B, the orbits biG(i) can easily be
computed, and we can thus obtain the order of G. A base and associated
strong generating set are required by most advanced permutation group al-
gorithms, and are very useful in G-graph computations.

As well as introducing the fundamental concepts of base and strong gen-
erating set, Sims [34] devised an algorithm, now called the Schreier-Sims
algorithm, to construct a base and associated strong generating set for the

4



permutation group G = 〈X〉. Modern variants of this algorithm and others,
implemented in GAP and Magma, can be used to compute bases and strong
generating sets for many permutation groups of degree 105 or more (see [33,
Ch. 5, 8]). It is shown in [33, Ch. 5] that, given a base B for G, a strong gen-
erating set for G can be computed in O(n|B|2|X|(log |G|)3) time. Of course,
one could take B to be a sequence of length n of all of the elements of V ,
but in practice one often knows or can compute a much shorter base.

Some permutation group algorithms, such as those for determining the G-
stabilizer of a set of points of V or determining the centralizer of a subgroup
of G, currently use backtrack search, and are not polynomial-time algorithms.
Modern implementations of certain permutation group backtrack algorithms
can, however, be quite efficient in practice, even when V has size 105 or more
(see [22]). It would be extremely interesting if polynomial-time algorithms
could be found for set-stabilizer or subgroup-centralizer, especially since the
problem of determining graph isomorphism is polynomial-time reducible to
each of these tasks (see [33, C. 3]).

3 Storing and accessing a G-graph

We now consider how GRAPE stores a G-graph G = (G,G, φ) in a compact
way that also enables the efficient recovery of basic information about the
(di)graph G. In this implementation, we store φ(G) by a generating set, so
we now assume that G = φ(G) ≤ Aut(G) and let G be given by a generating
set X.

Let V1, . . . , Vk be the orbits of G on the set V of vertices of G, with re-
spective representatives v1, . . . , vk. We store G using a record data structure,
containing:

1. the permutation generators X for G;

2. the list v1, . . . , vk of orbit representatives;

3. the list G(v1), . . . , G(vk) of the adjacency sets of these G-orbit repre-
sentatives;

4. a Schreier vector s(V,X).

Note that even if G is trivial, then the above method of storing G is not
significantly worse than a represention by a list of adjacency sets of the
vertices.

5



We now describe how to use the Schreier vector s = s(V,X) to determine
whether, for vertices v and w, (v, w) is an arc of G, and to calculate the
adjacency set G(v) of v. We first use s to determine a pair (vi,w) for which
vi is the orbit representative of vG and w is a word in X mapping vi to
v. Then (v, w) is an arc of G if and only if ww−1 ∈ G(vi), and we have
G(v) = G(vi)w.

Our method of storing a G-graph is space-efficient at the cost of time
for the recovery of the adjacency sets of vertices. It is a good idea for the
Schreier trees encoded by s to be as shallow as is reasonably possible – hence
the use of breadth-first search. A thorough discussion on computing shallow
Schreier trees is given in [33, Ch. 4]. We do remark, however, that our method
of storing G-graphs can often save time when constructing a graph, since we
need only calculate the adjacency sets of orbit representatives for G on V .

We discuss one final point concerning the GRAPE data structure for a
G-graph G, which has turned out to be extremely useful when doing ‘real-
life’ calculations. Internally, the vertices of G are represented by the integers
1, 2, . . . , |V (G)|, but also each vertex has a ‘name’, which can be an object
of any GAP type. When constructing a new graph (possibly from another
graph), the vertices of this new graph are numbered 1, 2, . . ., but their names
are chosen to reflect the mathematical nature of the vertices. Details of this
naming for specific functions can be found in the GRAPE manual. (The use of
this naming, which is implemented by a list, was suggested by P. J. Cameron.)

4 Constructing G-graphs

Although not always necessary, we assume from here on that if we are com-
puting with a G-graph G = (G,G, φ), then we have a base and associated
strong generating set for φ(G) acting on V = V (G). This allows, for example,
the efficient calculation of the φ(G)-stabilizer of an arbitrary point in V (see
[33, Ch. 5]). We remark that in many constructions of G-graphs, our knowl-
edge about G often allows us to compute this base and strong generating
set much more efficiently than otherwise. For example, we often know the
order of φ(G), and this allows the use of a very fast randomized algorithm to
compute a base and strong generating set (see [33, Ch. 8]), often applicable
to groups of degree 106 or more. We also remark that the nauty package [26]
(see Section 6) outputs the automorphism group of a graph as a base and
associated strong generating set for that group.

6



GRAPE has many functions to construct G-graphs, including Cayley graphs,
orbital (di)graphs, induced subgraphs, and quotient graphs. However, the
most useful and general way of constructing a G-graph in GRAPE is to use
the function Graph, which behaves as follows. The input is a group G (which
may or may not be a permutation group), a finite set V on which G acts (the
action can be one of the standard actions in GAP or may be one supplied
by the user), and a G-invariant relation rel on V (given as a function of two
vertices v and w and which returns true or false according to whether or
not (v, w) is in the relation). The output is the G-graph G with vertex set
V , where (v, w) an arc if and only if rel(v, w).

The first step is to compute the orbits of G acting on V , and the associated
Schreier vector. Then, for each orbit-representative r, we need to determine
the v ∈ V such that rel(r, v). In fact, we need check rel(r, s) only for those
s in a set of orbit-representatives of the orbits on V of the G-stabilizer H of
r, since rel(r, t) for each t in sH if and only if rel(r, s).

5 G-breadth-first search in a G-graph

In this section, for ease of exposition, we assume that our G-graph G = (V,E)
is a simple graph, and that G ≤ Aut(G). We define Gi(v) to be the set of all
vertices at distance i from a vertex v of G.

Many properties of G can be determined by (possibly repeated) applica-
tion of breadth-first search. These include finding the connected components,
diameter, and girth, as well as determining various regularity properties, such
as whether G is distance-regular. We describe here a version of breadth-
first search, which we call G-breadth-first search, which takes into account
G ≤ Aut(G).

Let v ∈ V , and letH = Gv be the stabilizer in G of v. The key observation
is that if w is a vertex at distance i from v, then each vertex in the orbit wH
is at distance i from v.

Suppose that V1 = {v}, V2, . . . , Vk are the orbits of H on V , with re-
spective representatives v1 = v, v2, . . . , vk, and let R = {v1, . . . , vk}. In a
G-breadth-first search from v, we determine the sets R0, R1, . . . of H-orbit
representatives, where

Ri = Gi(v) ∩R.

Given Ri, we then have Gi(v) as the union of the (already computed) orbits
represented by the elements of Ri.

7



Clearly R0 = {v}. The basic step is to obtain Ri+1 from Ri. We actually
do more, in order to obtain more information from our G-breadth-first search.
We start by setting Ri+1 := {}, and then for each r ∈ Ri, do the following:

1. determine C := G(r) ∩ Gi−1(v), A := G(r) ∩ Gi(v), and B := G(r) −
(C ∪ A);

2. add to Ri+1 the representatives of the H-orbits that intersect B non-
trivially;

3. for later use, store ci(v, r) := |C|, ai(v, r) := |A|, and bi(v, r) := |B|.

The G-breadth-first search stops with R0, . . . , Rm when Rm+1 is empty, but
Rm is not. If required, it is trivial to recover G0(v), . . . , Gm(v), the union of
these sets being the vertices in the connected component containing v. Also
note thatm is the greatest distance d(v) from v to any vertex in the connected
component of v. Moreover, if G is connected, then its diameter diam(G) is
the maximum value of d(w), as w ranges over a set of representatives of the
G-orbits on V .

Let g(v) denote the length of a shortest cycle containing v, if v is on some
cycle of G, and let g(v) = ∞ otherwise. The numbers ci(v, r) and ai(v, r)
computed above (for each i = 1, . . . ,m and each r ∈ Ri) can be used to
determine g(v), as follows. Let t be the least value of i ∈ {1, . . . ,m} such
that ci(v, r) ≥ 2 (for some r ∈ Ri) or ai(v, r) ≥ 1 (for some r ∈ Ri), if such
an i exists. If no such i exists then g(v) = ∞; otherwise, if ct(v, r) ≥ 2 for
some r ∈ Ri, then g(v) = 2t; if not then g(v) = 2t + 1. Note that the girth
of G is the minimum value of g(w), as w ranges over a set of representatives
of the G-orbits on V (a girth of ∞ means that G has no cycles).

Now define c0(v, v) = 0, a0(v, v) = 0, and b0(v, v) = |G(v)|. Let 0 ≤
i ≤ m and r ∈ Ri. If ci(v, r) depends only on i and v (and not the H-orbit
representative r), then we denote this quantity by ci(v) and call it a local
parameter of G. Similarly, if ai(v, r) and bi(v, r) do not depend on r, then
these too are called local parameters, and are respectively denoted ai(v)
and bi(v). Such local parameters, if and when they exist, are used in the
determination of various regularity properties of G, the strongest of which is
distance-regularity. Indeed, the graph G is distance-regular if and only if G
is connected, d(v) is the same for all vertices v (so each d(v) = diam(G)), and
for each vertex v and i = 0, . . . , diam(G), all local parameters ci(v), ai(v),
and bi(v) exist and do not depend on v, thus giving the parameters ci, ai, and

8



bi of a distance-regular graph; see Chapter ??. Of course, we need to check
these conditions only for those vertices v in a set of orbit-representatives of
G on V .

Finally, we remark that G acts distance-transitively on G (see Chapter ??)
if and only if G is connected, G has just one orbit on V , and, for some (and
hence all) vertices v, the number of Gv-orbits on V is diam(G) + 1.
G-breadth-first search is efficiently implemented in GRAPE in order to

determine connected components, diameter, girth, and regularity properties
of G-graphs. Although not discussed here, GRAPE includes many other func-
tions for computing with G-graphs, such as backtrack search functions for
classifying complete subgraphs of given weight-sum in a vertex-weighted G-
graph and for classifying partial linear spaces with given point graph and
parameters.

6 Automorphism groups and graph isomor-

phism

Automorphism groups of graphs are discussed in Chapter ??. The most
advanced algorithms and programs for computing automorphism groups of
graphs and for testing graph isomorphism are those of McKay, freely avail-
able as part of his nauty package [26], and useful for graphs with up to about
104 vertices (nauty also works with digraphs, although we do not consider
them in this section). We shall briefly describe McKay’s method of ‘par-
tition backtrack’, which has been very influential in computational group
theory. Indeed, partition-based backtrack methods are now used in the most
advanced available algorithms for calculating set-stabilizers, centralizers, and
normalizers in permutation groups (see [33, Ch. 9]).

Let G = (V,E) be a graph, with V = {1, . . . , n}, and let π be an ordered
partition of V . Thus π is a sequence (V1, . . . , Vk) of distinct subsets of V ,
such that {V1, . . . , Vk} is a partition of V . The elements of V are called cells.
(One can think of (G, π) as being a (not necessarily properly) vertex-coloured
graph, with vertices v and w having the same colour if and only if v and w
belong to to the same cell of π.) Define the ordered partition c(π) of V to be

({1, . . . , |V1|}, {|V1|+ 1, . . . , |V1|+ |V2|}, . . . , {n− |Vk|+ 1, . . . , n}).

For x a permutation of V , define Gx to be the graph (V,Ex), where Ex =
{{vx, wx} : {v, w} ∈ E}, and define πx = (V1x, . . . , Vkx), where Vix = {vx :

9



v ∈ Vi}. The automorphism group Aut(G, π) of (G, π) is the group of all
permutations x of V for which (Gx, πx) = (G, π). Thus, when π = (V ), the
automorphism group of (G, π) is just Aut(G).

The main functions of the nauty package are to determine Aut(G, π) (in
the form of a base and associated strong generating set), and in the process,
to compute the image of (G, π) under a canonical labelling map (described
below), which is used for isomorphism testing.

A canonical labelling map is a function C such that, for each graph G
with vertex set V = {1, . . . , n}, each ordered partition π of V , and each
permutation x of V , we have:

• C(G, π) = Gy for some permutation y of V such that πy = c(π);

• C(Gx, πx) = C(G, π).

The importance of a canonical labelling map C is as follows. Suppose that G1

and G2 are graphs on the same vertex-set V = {1, . . . , n}, and that π1 and π2

are ordered partitions of V with c(π1) = c(π2). Then there is a permutation
y of V such that (G1y, π1y) = (G2, π2) if and only if C(G1, π1) = C(G2, π2).
In particular, G1 is isomorphic to G2 if and only if C(G1, (V )) = C(G2, (V )).

6.1 Partition backtrack

As before, G is a graph with vertex set V = {1, . . . , n} and π = (V1, . . . , Vk)
is an ordered partition of V . The cells of π of size 1 are called singletons,
and a discrete partition is one in which all cells are singletons.

For each v ∈ V , let u(v, π) denote the index of the cell in π containing
v; in other words, u(v, π) = i means that v ∈ Vi. We say that an ordered
partition ν of V is a refinement of π if:

• each cell of ν is contained in some cell of π;

• for each v, w ∈ V : if u(v, π) < u(w, π) then u(v, ν) < u(w, ν).

A refinement process is a function R, such that for each graph G with vertex
set V , each ordered partition π of V , and each permutation x of V ,

R(G, π) is a refinement of π, and R(G, π)x = R(Gx, πx).

In particular, if x ∈ Aut(G), then R(G, π)x = R(G, πx), and so x maps the
ordered partition π to ν only if x maps the refinement R(G, π) to R(G, ν).

10



In particular, if c(R(G, π)) 6= c(R(G, ν)), then there is no element of Aut(G)
that maps π to ν. Note that, if R(G, π) is discrete, then Aut(G, π) is trivial.

An ordered partition π = (V1, . . . , Vk) of V is G-equitable if there are
constants dij (1 ≤ i, j ≤ k) such that, for each vertex v ∈ Vi, |G(v)∩Vj| = dij.
The default refinement process R used by nauty (for simple graphs) maps
(G, π) to an ordered G-equitable partition ν, such that ν is a refinement of
π, and, up to the order of its cells, is the coarsest equitable partition that is
a refinement of π. More precise details can be found in [25].

We now outline (roughly) how the nauty procedure finds Aut(G, π). For
much more thorough details, together with how a canonical labelling map is
found, see [25] (see also [20, 24, 28]).

We let R be the default refinement process used by nauty. The nauty
procedure proceeds by a depth-first search in a search tree whose nodes are
ordered G-equitable partitions of V ; the root is R(G, π) and the leaves are
discrete partitions. We call the first leaf found ζ. Any other leaf λ may
give rise to a new automorphism of (G, π), and we check to see whether the
unique permutation of V mapping ζ to λ is in Aut(G, π). A non-leaf ν in
the search tree is not discrete, and we obtain its ‘children’ as follows. First,
we choose a non-singleton cell C of ν according to some rule (we usually just
take the first non-singleton cell). Then for each v ∈ C (in ascending order of
v), we isolate v – that is, we form the ordered partition ν ◦ v obtained from
ν by replacing C by {v}, C − {v}, and then we add R(G, ν ◦ v) as a ‘child’
of ν. The search tree is pruned in various ways, so as to avoid searching
subtrees providing no new information (see [25]). The search is structured
so as to provide a base and associated strong generating set for Aut(G, π).
In determining the first leaf ζ, G-vertices w1, . . . , wm, say, are isolated (wi at
depth i) for the formation of the ancestors of ζ (other than the root) and the
formation of ζ itself. It is not difficult to see that (w1, . . . , wm) is a base for
Aut(G, π); nauty computes a strong generating set relative to this base.

7 Computing with vertex-transitive graphs

Recall that a (di)graph G is vertex-transitive if Aut(G) acts transitively on
V (G). The class of vertex-transitive graphs includes Cayley graphs and sym-
metric graphs (studied in Chapter ??), which further includes the class of
distance-transitive graphs (studied in Chapter ??). In this section we con-
sider the computational study of a G-graph G, where G ≤ Aut(G) acts tran-

11



sitively on V (G). Note that the GRAPE data structure for storing a G-graph
is especially compact in this case.

7.1 Collapsed adjacency matrices

Let G be a transitive permutation group on a finite set V . Then G has
a natural action on V × V , defined by (v, w)x = (vx, wx). The orbits of
this action are called orbitals, and the orbits of the stabilizer Gv of a point
v ∈ V are called suborbits. It is well known that the orbitals for G are in
one-to-one correspondence with these suborbits: this correspondence maps
an orbital E to the suborbit {w : (v, w) ∈ E}. The orbital digraph for G
associated with an orbital E is simply the digraph (V,E). If the orbital E is
non-diagonal and self-paired (see Chapter ??) then we associate the orbital
graph (V, {{v, w} : (v, w) ∈ E}) with E.

Let v1 ∈ V , and suppose that V1 = {v1}, V2, . . . , Vk is an ordering of the
orbits of Gv1 , with respective representatives v1, v2, . . . , vk; k is the rank of G.
Let G = (V,E) be a (di)graph on which G acts vertex-transitively, so that E
is a union of orbitals and G(v) is the union of the corresponding suborbits
contained in {V1, . . . , Vk}. For i, j = 1, . . . , k, define

aij = |G(vi) ∩ Vj}|.

Note that aij does not depend on the choice vi of suborbit representative, and
it can easily be computed using the GRAPE data structure for the G-graph
G (in practice, for |V | up to about 106). The k× k integer matrix A = (aij)
is the collapsed adjacency matrix for G, with respect to G and the ordering
of the suborbits. This matrix (which is extremely compact when k is small)
contains at least as much information as that computed in a G-breadth first
search from v.

Since G acts vertex-transitively, the single collapsed adjacency matrix A
for G can be used to determine whether G is (strongly) connected, and if so,
what its diameter is; whether G is a simple graph, and if so what its girth
is, whether G is distance-regular, and whether G acts distance-transitively
on G. See [31] for more detailed information and applications of collapsed
adjacency matrices, and also Chapter ?? for examples of ‘collapsed adjacency
diagrams’.

We remark that the collapsed adjacency matrices for the orbital digraphs
for the transitive group G are useful in studying the coherent configuration as-
sociated with G (see [5, 12]), since, with respect to a fixed ordering V1, . . . , Vk

12



of the suborbits as above, the collapsed adjacency matrix for an orbital di-
graph (V,E) for G is the transpose of the intersection matrix (as defined in
[5, Ch. 3]) corresponding to the orbital paired with E.

7.2 Distance-transitive graphs

Chapter ?? provides an overview of the state of the classification of distance-
transitive graphs. Here we discuss the application of computing, which has
been used in the discovery, analysis, and classification of certain distance-
regular and distance-transitive graphs (see, for example, [37, 31, 23, 18]).
We also remark that computing is used in the determination of feasible in-
tersection arrays for possible distance-regular graphs (see, for example, [3]).

Suppose that G acts distance-transitively on a graph G. Then G must
be an orbital graph for G of the smallest or second-smallest vertex-degree
(see [18]). Furthermore, each orbital for G must be self-paired, which is
equivalent to the property that the permutation character of G on V is the
sum of distinct complex irreducible characters, each with Frobenius-Schur
indicator +1 (see [2, p. 64]). For these, and other reasons, it makes sense to
analyse the lower degree orbital graphs of permutation representations whose
character is multiplicity-free – that is, the sum of distinct complex irreducible
characters.

Computation has been applied extensively in the classification of the
graphs on which a sporadic simple group or its automorphism group acts
primitively and distance-transitively (see [23, 18]; the results of this classi-
fication are given in Chapter ??). In the process of this classification, the
primitive multiplicity-free permutation characters for these sporadic groups
were also determined, and for most of the corresponding permutation rep-
resentations of sporadic groups, a collapsed adjacency matrix was computed
for the orbital graph of least degree. This built on the work of Praeger
and Soicher [31], where collapsed adjacency matrices were computed for the
orbital digraphs for all permutation representations of rank at most 5 of
the sporadic simple groups and their automorphism groups. The practical
computational determination of permutation characters is described in some
detail in Linton, Lux and Soicher [23], which also details randomized tech-
niques for computing collapsed adjacency matrices for certain permutation
representations of degree about 1011, where it would be impossible to store
explicit permutation generators. These techniques make use of graph algo-
rithms as well as permutation group algorithms.

13



An ambitious project at Lehrstuhl D für Mathematik, RWTH, Aachen,
involving T. Breuer, I. Höhler, and J. Müller, has since determined collapsed
adjacency matrices for all orbital digraphs for all multiplicity-free permuta-
tion representations of the sporadic simple groups and their automorphism
groups, and the results are published on the world-wide web [1] (although
what they call ‘collapsed adjacency matrices’ we would call intersection ma-
trices).

We remark that many permutation and matrix representations of finite
simple groups and related groups can be downloaded from the online ATLAS
of group representations [41]. These group representations are very useful
for contructing related G-graphs and collapsed adjacency matrices.

8 Coset enumeration

Coset enumeration is one of the oldest and most useful methods of computa-
tional group theory (see [30, 35, 14] and their references). For this chapter,
we concentrate on what coset enumeration does, and on the application of
coset enumeration and related procedures to problems in graph theory.

Let G = 〈X : R〉 be a finitely presented group – that is, G is generated by
the finite set X, subject (only) to the finite set R of relators, which are words
in X ∪X−1 that evaluate to the identity in G (where X−1 = {x−1 : x ∈ X}).
The input to coset enumeration is (X,R, Y ), where Y is a set of words in
X ∪X−1 that generates a subgroup H of G.

The coset enumeration process attempts to construct a set V , with 1 ∈ V ,
and a transitive permutation representation ρ : G → Sym(V ), such that in
this representation, H is the stabilizer in G of the point 1. Coset enumeration
does this by using a trial-and-error process for constructing the permutations
ρ(X∪X−1). The name coset enumeration comes from the fact that, if a coset
enumeration is successful, there is a one-to-one correspondence between the
elements of V and the cosets of H in G, with 1 corresponding to H.

If the index of H in G is infinite, then the coset enumeration process does
not terminate; if it is finite, then the process terminates, but there can be no
computable general bound (in terms of the size of the input and the putative
index) on the time or store required for termination (see, for example, [30]).

There is an enormous amount of flexibility in the coset enumeration pro-
cess, and many different approaches have been suggested and experimented
with (see [30, 35, 14]). Depending on the presentation and the approach used,

14



there can be huge variations in the time and store taken. Currently, the most
advanced methods are due to G. Havas and C. Ramsay, and these methods
are available in their ACE package [15], also available as a GAP package [16]
and within the Magma system [27].

There are many useful variations on coset enumeration. For example,
a ‘modified Todd-Coxeter’ enumeration gives us a presentation for H, and
the ‘low-index subgroups procedure’ determines (up to permutation isomor-
phism) all transitive representations of G up to some given degree k; see [30]
for an excellent introduction to coset enumeration and its variations.

9 Coset enumeration in the study of symmet-

ric graphs

A graph G is symmetric if Aut(G) acts transitively on both its vertices and
arcs (ordered pairs of adjacent vertices). A subgroup G of Aut(G) acts sym-
metrically on G if G acts transitively on both the vertices and arcs of G.

One common way to study connected symmetric graphs with given prop-
erties is by determining the groups that act on them symmetrically, as quo-
tients of universal completions of appropriate amalgams (see Chapter ??,
[19] for a useful overview, and [17] for a more general geometrical context).
In this approach, we first use the given graph-theoretical properties to de-
termine the possible amalgams of the form A = {Gv,G{v,w}}, where (v, w)
is an arc in the putative graph on which G acts symmetrically. Since the
universal completion U(A) of such an amalgam of two groups (with neither
a subgroup of the other) is infinite, we need to add further relations to U(A)
to obtain the finite groups of automorphisms we seek. Such extra relations
could come from cycles in our graph or from the local graph structure.

Coset enumeration can then be used in an effort to determine the (hope-
fully finite) index of H = Gv in G, and to construct the representation of G
acting on the set V of right cosets ofH in G. Given such a representation of G
on V , we can reconstruct and study the graph G which may have the proper-
ties we seek (or we may have been able to prove theoretically that G has the
required properties). This graph G is simply the orbital graph for G for which
the orbital contains (H,Hg), where g is an element of G{v,w} −H. Applica-
tions of this kind include [29], where the 4- and 5-arc-transitive connected
cubic graphs of girth up to 11 and girth 13 are classified; see Chapter ?? for

15



a discussion of s-arc transitivity, and Conder and Dobcsányi [6], where the
connected symmetric cubic graphs on up to 768 vertices are determined us-
ing a powerful new low-index subgroups procedure [7], parallel computation,
and coset enumeration. Of course, computational studies of this kind often
lead to conjectures and theoretical results. For more applications of coset
enumeration to the study of symmetric graphs, see Weiss [39] for a beautiful
and natural characterization and construction of the sporadic simple group
J3, and also [40, 36, 10].

9.1 Graphs locally a given graph

We now give an example where additional transitivity assumptions and local
stucture specification lead to an amalgam of three groups. We use the ATLAS
notation [8] for group structures.

Let G and H be graphs. Then G is said to be locally-H if, for each vertex
v of G, the induced subgraph on G(v) is isomorphic to H (this situation
is discussed briefly in Chapter ??). Given a graph H, coset enumeration
can sometimes be used effectively to study presentations that arise in the
classification of the connected graphs G that are locally-H, for which Aut(G)
acts transitively on the ordered triangles ofG. These presentations come from
applying the amalgam method to putative stabilizers of a vertex, incident
edge, and triangle, contained in a fixed triangle of such a G.

A simple, but good, example of this application of coset enumeration is
given in [10], where H is the incidence graph of the unique 2–(11,5,2) design,
and where the ordered-triangle-transitive graphs G which are locally-H are
classified. We discuss here the case where a vertex-stabilizer in the automor-
phism group of G is isomorphic to PGL2(11). For such a graph G, it is shown
that there is (essentially) only one possible amalgam A = {X ,Y ,Z} of the
Aut(G)-stabilizers X ,Y ,Z of x, {x, y}, and {x, y, z}, contained in a triangle
{x, y, z} of G. In this amalgam, X ∼= PGL2(11), Y ∼= S5, Z ∼= (A4 × 3) : 2,
X ∩Y ∼= A5, X ∩Z ∼= S4, and Y ∩Z ∼= S4. Then Aut(G) is a homomorphic
image of U(A), which has the following presentation, determined in [10]:

〈a, b, c, d, e : a3 = b2 = c2 = d2 = (ab)3 = (ac)2 = (ad)2 = a(cd)4

= (bc)3 = (bd)2 = e2 = (ae)2 = (be)2 = (ce)2 = (de)3 = 1〉.

For this presentation of U(A), X maps onto 〈a, b, c, d〉, Y maps onto 〈a, b, c, e〉
and Z maps onto 〈a, b, d, e〉; the relations (ac)2 = (ad)2 = 1 are consequences
of the others.

16



Applying coset enumeration, we find that 〈a, b, c, d〉 has index 432 in
U(A). It is then shown that U(A) ∼= (3 × M12) : 2, and that there are
just two connected ordered-triangle-transitive locally-H graphs whose vertex-
stabilizer is PGL2(11), having (respectively) 432 and 144 vertices and auto-
morphism groups isomorphic to U(A) and U(A)/〈(bcde)11〉 ∼= M12 : 2, the
automorphism group of the Mathieu group M12.

References

[1] T. Breuer and J. Müller, The character tables of endomorphism rings
of multiplicity-free permutation modules of the sporadic simple groups,
their automorphism groups, and their cyclic central extension groups;
http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/mferctbl.html.

[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs,
Springer, 1989.

[3] A. E. Brouwer and J. H. Koolen, The distance-regular graphs of valency
four, J. Algebr. Combin. 10 (1999), 5–24.

[4] G. Butler, Fundamental Algorithms for Permutation Groups, Lecture
Notes in Computer Science 559, Springer, 1991.

[5] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts
45, Cambridge University Press, 1999.

[6] M. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768
vertices, J. Combin. Math. Combin. Comput. 40 (2002), 41–63.

[7] M. Conder and P. Dobcsányi, Applications and adaptations of the low
index subgroups procedure, Math. Comput., to appear.

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,
ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.

[9] H. Cuypers, L. H. Soicher and H. Sterk, Working with finite groups, Some
Tapas of Computer Algebra (ed. A. M. Cohen, H. Cuypers and H. Sterk),
Springer (1999), 184–207.

17



[10] H. Cuypers, L. H. Soicher and H. Sterk, The small Mathieu groups
(Project), Some Tapas of Computer Algebra (ed. A. M. Cohen, H. Cuypers
and H. Sterk), Springer (1999), 323–337.

[11] I. A. Faradžev and M. H. Klin, Computer package for computations with
coherent configurations, Proc. ISSAC ’91 (ed. S. M. Watt), Assoc. Comp.
Mach. (1991), 219–223.

[12] I. A. Faradžev, M. H. Klin and M. E. Muzichuk, Cellular rings and
groups of automorphisms of graphs, Investigations in Algebraic Theory
of Combinatorial Objects (ed. I. A. Faradžev, A. A. Ivanov, M. H. Klin and
A. J. Woldar), Kluwer (1994), 1–152.

[13] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.3, Aachen, St Andrews, 2002; http://www.gap-system.org.

[14] G. Havas and C. Ramsay, Experiments in coset enumeration, Groups
and Computation III (ed. W. M. Kantor and Á. Seress), de Gruyter (2001),
183–192.

[15] G. Havas and C. Ramsay, The “Advanced Coset Enumerator” ACE;
http://www.csee.uq.edu.au/~cram/ce.html.

[16] G. Havas, C. Ramsay, G. Gamble and A. Hulpke, The ACE Package for
GAP; http://www.math.rwth-aachen.de/~Greg.Gamble/ACE.

[17] A. A. Ivanov, Geometry of Sporadic Groups. I: Petersen and Tilde Ge-
ometries, Cambridge University Press, 1999.

[18] A. A. Ivanov, S. A. Linton, K. Lux, J. Saxl and L. H. Soicher, Distance-
transitive representations of the sporadic groups, Comm. Algebra 23
(1995), 3379–3427.

[19] A. A. Ivanov and S. V. Shpectorov, Applications of group amalgams to
algebraic graph theory, Investigations in Algebraic Theory of Combinato-
rial Objects (ed. I. A. Faradžev, A. A. Ivanov, M. H. Klin and A. J. Woldar),
Kluwer (1994), 417–441.

[20] W. Kocay, On writing isomorphism programs, Computational and Con-
structive Design Theory (ed. W. D. Wallis), Kluwer (1996), 135–175.

18



[21] W. Kocay, Groups & Graphs; http://www.paddle.mb.ca/G&G/G&G.html.

[22] J. S. Leon, Partitions, refinements, and permutation group computation,
Groups and Computation II (ed. L. Finkelstein and W. M. Kantor), DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science
28, Amer. Math. Soc. (1997), 123–158.

[23] S. A. Linton, K. Lux and L. H. Soicher, The primitive distance-transitive
representations of the Fischer groups, Experimental Math. 4 (1995), 235–
253.

[24] B. D. McKay, Computing automorphisms and canonical labellings of
graphs, Comb. Math., Proc. Int. Conf., Canberra 1977, Lecture Notes in
Mathematics 686, Springer (1978), 223–232.

[25] B. D. McKay, Practical graph isomorphism, Congr. Numerantium 30
(1981), 45–87.

[26] B. D. McKay, nauty; http://cs.anu.edu.au/people/bdm/nauty.

[27] The Magma Computational Algebra System, Computer Algebra
Group, School of Mathematics and Statistics, University of Sydney;
http://magma.maths.usyd.edu.au.

[28] T. Miyazaki, The complexity of McKay’s canonical labelling algorithm,
Groups and Computation II (ed. L. Finkelstein and W. M. Kantor), DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science
28, Amer. Math. Soc. (1997), 239–256.

[29] M. J. Morton, Classification of 4- and 5-arc-transitive cubic graphs of
small girth, J. Aust. Math. Soc. (A) 50 (1991), 138–149, and Corrigendum,
J. Aust. Math. Soc. (A) 52 (1992), 419–420.

[30] J. Neubüser, An elementary introduction to coset table methods in com-
putational group theory, Groups – St. Andrews 1981 (ed. C. M. Campbell
and E. F. Robertson), London Math. Soc. Lecture Note Series 71, Cam-
bridge University Press (1982) 1–45.

[31] C. E. Praeger and L. H. Soicher, Low Rank Representations and Graphs
for Sporadic Groups, Australian Math. Soc. Lecture Series 8, Cambridge
University Press, 1997.

19



[32] S. Rees and L. H. Soicher, An algorithmic approach to fun-
damental groups and covers of combinatorial cell complexes, J.
Symbolic Comp. 29 (2000), 59–77; GAP program available at:
http://www.maths.qmul.ac.uk/~leonard/fundamental.

[33] Á. Seress, Permutation Group Algorithms, Cambridge University Press,
2003.

[34] C. C. Sims, Computation with permutation groups, Proceedings of the
Second Symposium on Symbolic and Algebraic Manipulation (ed. S. R. Pet-
rick), Assoc. Comp. Mach. (1971), 23–28.

[35] C. C. Sims, Computation with Finitely Presented Groups, Cambridge
University Press, 1994.

[36] L. H. Soicher, On simplicial complexes related to the Suzuki sequence
graphs, Groups, Combinatorics and Geometry (ed. M. W. Liebeck and
J. Saxl), London Math. Soc. Lecture Note Series 165, Cambridge Uni-
versity Press (1992), 240–248.

[37] L. H. Soicher, Three new distance-regular graphs, Europ. J. Comb. 14
(1993), 501–505.

[38] L. H. Soicher, The GRAPE Package for GAP;
http://www.maths.qmul.ac.uk/~leonard/grape.

[39] R. Weiss, A characterization and another construction of Janko’s group
J3, Trans. Amer. Math. Soc. 298 (1986), 621–633.

[40] R. Weiss, Presentations for (G, s)-transitive graphs of small valency,
Math. Proc. Camb. Philos. Soc. 101 (1987), 7–20.

[41] R. A. Wilson et al., ATLAS of finite group representations;
http://web.mat.bham.ac.uk/atlas.

20


