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Abstract : Optimal incomplete block designs are pursued through the E-criterion of minimizing

maximal variance. Methodology is developed for design choice based on graphs and an extensive

catalog of downloadable designs compiled. Along with the general methodology, a near complete

solution for E-optimal block designs is provided for up to 15 treatments. E-optimality is revealed

as a flexible criterion that, depending on the application, can offer many choices for good designs.

1 Introduction

Blocking to improve efficiency of comparative experiments, deemed one of the three fundamental

principles of experimentation by Fisher (1937), is a tool in every statistician’s kit, and a concept

known by scientists across the experimental spectrum. Yet aside from relatively sparse, “standard”

designs, there is still much that is not known about the implementation of blocking, and known

designs are not easily accessed. This paper is a move towards correcting these shortfalls. In doing

so, a rigorous structure for determination of E-optimal block designs is established.

That blocking is a powerful tool for removing nuisance variation is a firmly established tenet of

statistical practice. Considerations leading to the decision to block have been examined in many

contexts and are a staple of modern texts, e.g. Box, Hunter, and Hunter (2005), Dean and Voss

(1999), Kuehl (2000), Oehlert (2000); why and how one blocks will not be rehashed here. Rather,

the purpose is to address the design question that follows: having selected blocks of experimental

units, one must still decide which units are to receive which treatments. That decision can be
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driven by the variances it induces. The variance reduction achieved by blocking is not a priori

measurable, nor is it affected by the treatment/unit assignment. But for any given blocking system,

the variances of estimators (up to a scalar multiple) are a function only of that assignment, so that

these variances can be a priori calculated. Design selection can be based upon summary measures

of estimator variances.

Formally, a block design is just an assignment of v treatments to n experimental units that have

been partitioned into b blocks of k units each. While the texts cited above illustrate that block

designs appear in multitudinous applications, the unifying, underlying problem in choice of block

design is succinctly stated: given (v, b, k), what is the best assignment of treatments to units? Let

D(v, b, k) be the class of all possible assignments for given (v, b, k), and use d to denote members

of D, that is, to denote available designs. The problem is to choose d ∈ D.

Many papers have been written addressing this problem; see Shah and Sinha (1989) for nu-

merous references and later in this paper. The partial answers found are typically theorems of the

form “if conditions X are satisfied then design Y is optimal.” Due to combinatorial difficulties in

optimization over discrete spaces, there has been no comprehensive solution for a practical range

of v for all practical b and k. The main theoretical advance here allows computational power to be

harnessed in bypassing a large measure of the combinatorial complexity.

Evaluation of a block design begins with the linear model. For yju the yield from unit u in

block j, the model is

yju = µ + βj + τd[ju] + eju (1)

where as usual µ is an overall mean, βj the effect of block j, τi the effect of treatment i, and the

eju are uncorrelated, equivariable (σ2), random errors. The design function d[ju] in (1) reports the

treatment assigned to unit (ju) by design d.

Now let Nd = (ndij) be the v × b treatment×block incidence matrix determined by design d;

ndij is the number of units in block j assigned treatment i. Let rdi be the total number of units

receiving treatment i. Then the information matrix for estimation of treatment effects is

Cd = Diag(rd1, . . . , rdv)− 1
k
NdN

′
d (2)

All treatment contrasts are estimable if and only if Cd has rank v − 1 (Chakrabarti, 1962). D is

restricted to contain only these designs.
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Any generalized inverse of Cd is a covariance matrix for estimation of treatment contrasts l′τ ,

that is, var(l̂′τ) = σ2l′C−
d l. Let zdi = 1

µdi
for the nonzero eigenvalues µd1 ≤ µd2 ≤ . . . ≤ µd,v−1 of

Cd. Aside from σ2, the zdi are variances for a normalized set of orthogonal treatment contrasts.

Accordingly, choice of design can be based on minimizing summary functions of the zdi. The

average variance of any set of v− 1 orthonormal contrasts is proportional to
∑

i zdi, and a design d

minimizing this quantity is said to be A-optimal. D-optimal designs minimize Πv−1
i=1 zdi, this being

proportional to the volume of the confidence ellipsoid for any v − 1 orthonormal contrasts. The

primary focus of this paper will be minimization of the E-criterion zd1, which is proportional to the

largest variance over all (normalized) treatment contrasts. A broad discussion of the E-criterion

and its history can be found in Shah and Sinha (1989, chapter 3).

Optimality work based on criteria such as just discussed took hold with papers by Kiefer (1975)

and John and Mitchell (1977). The former established rigorous optimality proofs in some very

special cases. The latter generated designs based on an optimality conjecture. Both worked with

settings for which v divides n, meaning that equal replication is possible and so covering the great

majority of applications; this will also be done here.

John and Mitchell’s (1977) conjecture is based on an equivalence between designs and graphs.

Exploring that idea, and its relationship to one of Kiefer’s (1975) key results, requires a few prelim-

inary definitions. A block design d is binary if all ndij are 0 or 1, that is, if no treatment is assigned

to more than one unit in any block. For binary d, the diagonal elements of NdN
′
d are the replication

numbers rdi. Moreover, if d is also equireplicate (all rdi are equal), then Cd in (2) is a function only

of the off-diagonal elements of NdN
′
d, denoted by λdii′ and termed treatment concurrence counts

(λdii′ is the number of blocks containing both treatments i and i′). For given (v, b, k), define the

associated parameters (r, λ, p, q) by

r = int
(

bk
v

)
, the replication target λ = int

(
r(k−1)

v−1

)
, the concurrence target

p = bk − vr, the plot excess q = r(k − 1)− λ(v − 1), the concurrence excess

The plot excess p is the number of experimental units available beyond that needed for equal

replication of treatments. The possibility of equal replication (all rdi achieve the replication target

r) thus necessitates p = 0, which as already stated, is taken throughout the remainder of this paper.

For an equally replicated design, the concurrence excess q is the number of units in the blocks
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containing any given treatment i beyond that required for the λdii′ to achieve the concurrence

target λ for all i′ ( 6= i).

If both p and q are 0, then it is possible that a binary design can achieve both targets just

defined: rdi = r for all i, and λdii′ = λ for all i 6= i′. Widely known, such a design is a balanced

incomplete block design, or BIBD. One of Kiefer’s (1975) contributions was to establish A-, D-,

and E-optimality, and much more, of BIBDs. Most of the theory for optimal block designs in the

intervening 30 years, working with (p, q) 6= (0, 0), can be viewed as trying to establish optimality

for designs that come as “close” to these targets as possible. That approach makes intuitive sense,

which is strengthened by the following decomposition of the information matrix.

For binary, equireplicate d and J an all-ones matrix, Cd can be written as

Cd = rI − 1
k
NdN

′
d = rI − r

k
I − 1

k
(λdii′)i6=i′

=
r(k − 1)

k
I − 1

k
[(λdii′)i6=i′ − (λ)i6=i′ ]− 1

k
(λ)i6=i′

=
(

vλ + q

k

)
I − λ

k
J − 1

k
∆d (3)

where the discrepancy matrix ∆d has elements δdii′ , called discrepancies, defined by

δdii′ =





0 if i = i′

λdii′ − λ if i 6= i′.
(4)

Any discrepancy matrix is symmetric with constant row sums of q.

BIBDs have q = 0 and all δdii′ = 0, so that Cd = λv
k (I − 1

vJ). A matrix of the form α(I − 1
vJ)

is said to be completely symmetric. Binarity and complete symmetry are the crucial ingredients of

Kiefer’s (1975) proof for the many optimalities of BIBDs. The intuitive argument above says to

choose binary d so that ∆d is as close to completely symmetric as possible. This brings us to John

and Mitchell’s (1977) work. A regular graph design (RGD) is a binary, equireplicate block design

with all δdii′ being 0 or 1. They conjectured “if D(v, b, k) contains a RGD, then a RGD is A-, D-,

and E-optimal.” There is no known counterexample to this conjecture for either A- or D-optimality.

The situation will be seen to be different for the E-criterion.

The graph terminology is due to a simple equivalence. A graph is just a collection of v vertices

with δii′ (say) edges connecting vertices i 6= i′. The matrix ∆ = (δii′) is called the adjacency matrix
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of the graph. All graphs correspond to all adjacency matrices, that is, all symmetric matrices

with nonnegative integer entries and zero diagonals. A graph is regular if its adjacency matrix

has constant row sums, called the valency. The discrepancy matrix ∆d is precisely the adjacency

matrix for a regular graph of valency q provided, as in John and Mitchell’s (1977) definition, it

contains no negative values δdii′ . But there is also a graph equivalence if some δdii′ < 0.

Say a regular graph with adjacency matrix ∆ is 1-regular if all δii′ ∈ {0, 1}, 2-regular if not

1-regular and all δii′ ∈ {0, 1, 2}, and so on. Define the m-complement of ∆ to be m(J − I) − ∆.

Equivalence of discrepancy matrices and regular graphs is through this complement.

Lemma 1 For any nonzero discrepancy matrix ∆d as defined by (3) and (4), let md = maxi6=i′ δdii′

and md = mini6=i′ δdii′. Then

∆ = md(J − I)−∆d

is the adjacency matrix of an m-regular graph, m = md −md. Conversely, let ∆ be the adjacency

matrix for an m-regular graph with at least one δii′ = 0, and write m = ds/(v−1)e where s = 1′∆1/v

is the constant row sum of ∆. Then

∆d = m(J − I)−∆

is a discrepancy matrix with md = m and md = m−m.

Proof Given ∆d, the difference md(J − I)−∆d is symmetric and zero on the diagonal, contains

only nonnegative integers with maximum m = md−md, and has constant row sums (v− 1)md− q.

Conversely, given m-regular ∆, it is likewise easily checked that the difference m(J − I)−∆ meets

the conditions for a discrepancy matrix with constant row sums q = m(v − 1) − s; the choice

m = ds/(v − 1)e forces 0 ≤ q ≤ v − 2. 2

Starting with an m-regular graph, the corresponding discrepancy matrix will have negative

entries if m < m, which in turn depends on the valency s = 1′∆1/v. The optimality work here will

require only m = m−1, with complement denoted ∆c = (m−1)(J−I)−∆ for an m-regular graph ∆.

Then ∆c contains at least one entry δc
ii′ = −1, and the valency of ∆ is s = (m− 1)(v − 1)− q.

With this terminology, the RGDs of John and Mitchell (1977) are designs whose discrepancy

matrices correspond to 1-regular graphs; these designs will now be denoted by RGD(1). Likewise a
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2-regular graph design, or RGD(2), is a binary, equireplicate design for which ∆d is the adjacency

matrix of a 2-regular graph. A 2-regular complement graph design, or RGD(2c), is a binary,

equireplicate design for which the discrepancy matrix is ∆d = J − I − ∆ for ∆ the adjacency

matrix of a 2-regular graph. RGD(m)s have all λdii′ ∈ {λ, λ + 1, . . . , λ + m} (equivalently, all

δdii′ ∈ {0, 1, . . . , m}) and RGD(mc)s have all λdii′ ∈ {λ − 1, λ, λ + 1, . . . , λ + m − 1} (all δdii′ ∈
{−1, 0, 1, . . . ,m− 1}).

The idea is to look beyond the RGD(1)s for good designs, that is, to consider discrepancy

matrices other than the 1-regular graphs. As will be seen, the RGD(m)s and RGD(mc)s form a

sufficiently rich class to solve the E-optimality problem. Presumably this would entail enumerating

m-regular graphs for all possible m, but the number of graphs grows so rapidly with v that complete

enumeration quickly becomes impossible. Section 2 develops theory for the E-criterion through

which computational resources can be effectively brought to bear in eliminating many competing

graphs prior to full enumeration. This theory allows determination of all E-best graphs for v ≤ 15

in section 3. Section 4 provides techniques for building the graph-based designs comprising the

online catalog described in section 5. Summary discussion, including choice of criterion and the

practical advantages of the E-approach, is in section 6.

2 A method for solving the E-problem

Minimization of zd1 is, of course, equivalent to maximizing µd1. Workers in E-optimality have

devised various upper bounds for µd1, then sought designs that achieve one of these bounds. The

first goal here is to generalize these bounds so that the E-problem becomes more tractable both

analytically and computationally. Lemma 2 applies to any symmetric, nonnegative definite matrix

with zero row and column sums.

Lemma 2 Partition Cd as

Cd =




Cd11 Cd12

Cd21 Cd22




where Cd11 is t× t for some t ≥ 1. Let w be any normalized t-vector and write x = w′1. Then

µd1 ≤
(

v

v − x2

)
w′Cd11w
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Proof Let y′ = (w′, 0′) and decompose y by y = (I − 1
vJ)y + 1

vJy = y1 + y2. Starting with the

facts that µd1 = minz′1=0 z′Cdz/z′z and y′11 = 0 gives

µd1 ≤ y′1Cdy1

y′1y1
=

w′Cd11w

w′w − 1
vx2

=
(

v

v − x2

)
w′Cd11w. 2

Among previously employed E-bounds following from lemma 2 are:

Corollary 3 The smallest nonzero eigenvalue µd1 of any Cd = (cdii′) in (2) satisfies (i) µd1 ≤
vcdii/(v−1), (ii) µd1 ≤ (cdii+cdi′i′−2cdii′)/2, and (iii) µd1 ≤ v(

∑
i∈H cdii+2

∑ ∑
i6=i‘∈H cdii′)/h(v−

h) where H is any h-subset of treatments.

Proof These follow by taking t = 1, 2, and h respectively, and in the latter two cases, w = (1,−1)′

and w = 1h and normalizing. 2

Corollary 3 and related bounds appear repeatedly throughout the literature, beginning with Jacroux

(1980a,b) and Cheng (1980). They can be effective in winnowing out many possible information

matrices, but are limited by choice of particular w. The advance here is not just in a simplified,

unifying proof, but in showing the options for fully flexible choice of w. For a given order of

submatrix, the sharpest bound afforded by lemma 2 is:

Corollary 4 Let Wt be the set of normalized t-vectors. Then

µd1 ≤ min
w∈Wt

(
v

v − (w′1)2

)
w′Cd11w

To relate corollary 4 to choice of graph, observe that the positive eigenvalues of Cd as given in (3) are
vλ+q

k − 1
k (eigenvalues of ∆d other than q). The smallest positive eigenvalue µd1 of Cd corresponds

to the largest eigenvalue (other than q) of ∆d, called the e-value of ∆d. It is now an easy step to:

Corollary 5 Among binary, equireplicate designs, the E-optimal choice minimizes the e-value of

∆d. Moreover, for any binary, equireplicate d,

µd1 ≤ vλ + q

k
− 1

k
max
w∈Wt

(
v

v − (w′1)2

)
w′∆̃d11w

where ∆̃d11 is any t× t principal submatrix of ∆̃d = ∆d − q
vJ .
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For obvious reasons, a discrepancy matrix with minimal e-value for fixed v and q will be termed E-

best. Corollary 5 is the result needed to find E-best graphs (and so E-optimal information matrices)

without a full enumeration, for it can eliminate many graphs by virtue of poorly performing sub-

graphs. It will make an otherwise overwhelming combinatorial problem computationally feasible.

3 Determining E-best Graphs

The implementation of corollary 5 to select the best discrepancy matrix (that is, the best graph)

will be described following an example to help fix the concepts.

Example 1 Consider v = 7 treatments and any (b, k) such that the concurrence excess is q = 2.

The E-best 1-regular graph (e-value=1.247) is

∆1 =




0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0




while the E-best discrepancy matrix (e-value=1) is found by complementing a 2-regular graph:

∆
c

2 =




0 2 2 0 0 0 0
2 0 2 0 0 0 0
2 2 0 0 0 0 0
0 0 0 0 2 1 1
0 0 0 2 0 1 1
0 0 0 1 1 0 2
0 0 0 1 1 2 0




c

=




0 −1 −1 1 1 1 1
−1 0 −1 1 1 1 1
−1 −1 0 1 1 1 1

1 1 1 0 −1 0 0
1 1 1 −1 0 0 0
1 1 1 0 0 0 −1
1 1 1 0 0 −1 0




One approach to finding these two matrices could be to enumerate all 1-regular and 2-regular

graphs on 7 vertices, but that would not be sufficient for the optimality argument unless m-regular

graphs could be shown inferior by other methods for every m ≥ 3. The results of section 2 will be

employed both to eliminate some m entirely, and to greatly reduce the enumeration for other, still

feasible m.

Example 1 is just one example where designs can be built which are E-better than RGD(1)s.

Actual designs and other examples will be presented later. Before us now is a graph enumeration
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problem. The simple graphs (all δii′ ∈ {0, 1}, regular or not), which include the 1-regular graphs,

have been extensively studied by combinatorialists. Their numbers grow rapidly: while there

are only four distinct possibilities for v = 3, there are 12, 005, 168 for v = 10. Multiple edges

adds another order of complexity so that a full enumeration even for the John-Mitchell range

(v ≤ 12, r ≤ 10) would be a daunting, if not currently impossible, task. Fortunately, corollary 5

allows the E-best graphs to be determined with far less effort.

Corollary 5 provides information on the e-value of a graph via a subgraph. If graphs are built up

one vertex at a time, then at each step all those failing to meet a specified bound can be discarded.

This is the basic strategy fleshed out below. It is stated in terms of m-regular graphs; complements

require only a slight modification. Because labelling of treatments is irrelevant, two graph matrices

(or submatrices) ∆1 and ∆2 are equivalent, termed isomorphic, if one can be found from the other

by a permutation of rows and columns (∆1 = P∆2P
′ for some permutation matrix P ). Clearly

only nonisomorphic graphs are sought. The algorithm begins with m = 1.

1. Guess the best e-value for given v and q, say e∗.

2. Enumerate possible order 3 submatrices of adjacency matrices for m-regular graphs.

3. Apply corollary 5 (omitting the constants (vλ+q)/k and −1/k) to each submatrix, eliminating

those with e-value greater than e∗.

4. For the remaining submatrices, generate nonisomorphic extensions with one additional row

and column.

5. If current matrix order is less than v, return to step 3.

6. Keep the E-best (there may be several) of the remaining graphs.

7. Attempt to eliminate graphs with larger m, and complement graphs, by applications of

lemma 2 (to a general ∆d, see appendix A). If successful, the search is complete. If not,

search again after incrementing m by 1.

If at any point in this process there are no remaining graphs, then return to step 1 and start over

with larger e∗.

There are imbedded, but surmountable, computational problems here, such as how to efficiently

generate extensions in step 4, which includes isomorphism checking and avoidance of previously
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eliminated substructures. Calculation of the corollary 5 bound is easily accomplished numerically.

By working sequentially in m, a search for (say) 2-regular graphs can exclude 1-regular graphs.

Given the best graphs, elimination of nonbinary and unequally replicated designs is typically trivial

(see appendix B), so that the graph search is really the main task. Table 1 summarizes results

of this search for all (v, q) with v ≤ 15. As there are far too many E-best discrepancy matrices

to include here (over 1300) they have been made available online at designtheory.org, a website

devoted to free storage and access to block designs and many of their properties, both statistical

and combinatorial. The graphs are stored there as xml files, in external representation format

(see Bailey et al, 2006), including notes on complementation. They are also available as R lists of

discrepancy matrices at www.stat.vt.edu/∼jpmorgan/discrepancy.

4 Building E-optimal Designs

The work to this point solves only half the problem. Now that the E-best graphs are known, the

corresponding designs must be found. Treatments can often, but not always, be assigned to blocks

so that the desired discrepancies are actually achieved.

Example 2 For (v, b, k) = (7, 7, 5) the associated concurrence parameters are (λ, q) = (3, 2). Ex-

ample 1 displays the E-best discrepancy matrix ∆
c

2, but it can be shown (appendix B) that there is

no corresponding design. In fact, the E-optimal design is this RGD(1), for which the discrepancy

matrix is ∆1 of example 1:

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4

This design has all λdii′ ∈ {λ, λ+1} = {3, 4}. For this v and k, the next b for which q = 2 is b = 28.

Now a RGD(2c) with discrepancy matrix ∆
c

2 can be found:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5
4 4 5 5 5 5 5 5 6 6 6 6 5 5 5 5 6 6 6 6 5 5 5 5 6 6 6 6
6 7 6 7 6 6 7 7 7 7 7 7 6 6 7 7 7 7 7 7 6 6 7 7 7 7 7 7
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and all λdii′ ∈ {λ− 1, λ, λ + 1} = {6, 7, 8}. Given this design, the same discrepancy matrix can be

achieved in D(7, 28 + 21s, 5) for any s ≥ 1 by adding the blocks of a BIBD in D(7, 21s, 5). Thus

E-optimal blocking of seven treatments into blocks of size five is solved for all b for which q = 2.

Example 2 illustrates this fact:

Lemma 6 If E-optimal d in D(v, b, k) has an E-best discrepancy matrix, k ≥ 3, and µd1 ≥
(

v
v−1

)
r(k−1)−2

k , then d ∪ d∗ is E-optimal in D(v, b + b∗, k) for any BIBD d∗ ∈ D(v, b∗, k).

Proof Among binary, equireplicate designs, this is immediate from (3), the fact that information

matrices for different sets of blocks are additive, and Cd∗ is completely symmetric. The conditions

on k and µd1 are sufficient to extend the result to the full class; see appendix B. 2

Designs d as in lemma 6 are said to be BIBD-extendable. Lemma 6 says that if the existence

problem can be solved for small b, then it can otherwise be left to the wealth of knowledge on

BIBDs (see Mathon and Rosa, 2006). The problem of building designs thus centers not on (v, b, k)

but on (v, q, k). The number of treatments v and the concurrence excess q specify the relevant

graph(s) and valency, after which given k specifies the relevant b, that is, the smallest b for which

the (v, q, k) combination is feasible. Not every (v, q, k) is feasible; for instance, q can only be zero

for k = v − 1.

With the E-best graphs for v ≤ 15 in hand, there is an obviously large number of designs to be

found, even with the extendability concept capping the possibilities for b. With the focus on online

cataloging for easy access, only a sketch of the techniques for building the designs will be offered.

Soicher (2003) developed the GAP Design software for building block designs. It has been an

invaluable tool in the current endeavor. GAP Design can accept a concurrence structure as input,

that is, it can be told the desired graph (or complement), and given sufficient time will either find

a design or conclude its nonexistence. Unfortunately, performance decreases rapidly with growing

v, or b, or k. Performance is enhanced by the software’s ability to accept a required automorphism

group for the sought design. Statisticians have long used group-based methods for building designs,

though not always in this generality nor employing this terminology, explained next.

An automorphism of a block design is a permutation of the treatments that reproduces the

design. For instance, the first design in example 2 (call it d1) is reproduced by the cyclic permutation
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(1 → 2, 2 → 3, . . . , 7 → 1). The set of all automorphisms of a design is its automorphism group;

for d1 this includes cycles at any lag t: (1 → 1 + t, 2 → 2 + t, . . . , 7 → 7 + t) (mod 7). This

is a useful concept for building designs in that designs with “large” automorphism groups are

determined by a correspondingly “small” subset of their blocks. For example, all blocks of d1 can

be found from any one block using the cyclic permutations. In searching for d1, it is vastly easier to

examine all possibilities for one block than for seven blocks. Use of the automorphism group is the

underlying concept for the method of differences introduced by Bose (1939) for BIBD construction

and extended many times by statistical researchers to a wide variety of contexts, including cyclic,

generalized cyclic, and α-designs (see John and Williams, 1995).

Example 3 For 11 treatments in 44 blocks of size 3, the concurrence excess is q = 4 and the E-best

discrepancy matrix is the complement of a 2-regular graph:

∆
c

=
(

2(J4 − I4) 0
0 J7 − I7

)c

=
(

I4 − J4 J4,7

J7,4 0

)

The blocks of a design having this discrepancy matrix are found from the 14 blocks:

1 1 1 1 2 2 2 2 2 2 2 2 2 2
2 5 5 8 7 7 5 5 6 6 6 9 8 9
5 8 8 11 8 8 10 10 7 11 11 11 9 10

by simultaneously applying the cyclic permutations (2, 3, 4), (5, 6, 7), and (8, 9, 10), holding 1 and

11 fixed. For instance, block (1, 2, 5) also gives (1, 3, 6) and (1, 4, 7); each of the 14 “starter” blocks

above gives 3 blocks of the design. The design is completed by two blocks, (2, 3, 4) and (5, 6, 7),

invariant to the permutations.

The automorphism group of a block design must be a subgroup of the automorphism group

of the associated graph. Many of the designs have been built by first determining the graph

automorphism group, choosing a likely subgroup in light of the given b and k, then executing GAP

Design with these inputs. Often several iterations, changing subgroups, was needed. In some cases

b is too large (due to excessive run times) for GAP Design to be useful. These were solved by

various trial-and-error constructions or by asking GAP Design to complete a likely subdesign.

In some cases no BIBD-extendable design exists. There are then two plausible approaches for

finding E-optimal designs. One is to widen the graph search: allow larger e∗ in the section 3 algo-

rithm until the best graph for which a (necessarily non-extendable) design does exist is determined,
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completing the optimality proof as shown in appendix B. The graph catalog at designtheory.org

contains all additional graphs determined in this manner. Alternatively, one can bypass the graph

approach and opt for a full enumeration of designs. This is feasible only with small (v, b), and

usually only once the class of competitors has been reduced by theoretical arguments. Examples

of both approaches are in appendix B.

Where nonexistence of a BIBD-extendable design has been determined, this was sometimes

accomplished with GAP Design, but more often with combinatorial arguments relative to (v, b, k)

and the desired graph (see appendix B).

5 The Design Catalog

The designs have been cataloged in downloadable form at designtheory.org. Each design in the

catalog is notated as to corresponding graph, provided it was found using a cataloged graph. Each

list of designs for given (v, q, k, b) is notated as to containing (or not) all possible E-optimal designs.

By “all” is meant one design for every distinct E-optimal information matrix for which at least one

design exists.

In the sense just discussed, the E-optimality problem has been completely solved for v ≤ 11,

3 ≤ k ≤ v − 1, save the case (v, q, k) = (10, 6, 5), where design existence for some of the 89 E-

best graphs remains unsettled. For larger v, as seen in Table 1, the number of E-best graphs is

sometimes quite large! Due both to this and to the increasing difficulty in finding larger designs, the

more modest goal of determining at least one BIBD-extendable E-optimal design for each (v, q, k)

has been pursued. In this sense, the E-optimality problem for v = 12, 13, 15 and 3 ≤ k ≤ v − 1

has been solved except for one case for each: (v, q, k) = (12, 2, 5), for which the smallest b is 120;

(v, q, k) = (13, 4, 5), for which the smallest b is 65; and (v, q, k) = (15, 12, 6) for which the smallest

b is 20 (though see the caveat for v = 15 below). The work has been more problematic for v = 14,

where only q = 1, 4, 6, 12 have been solved in their entirety. In addition q = 2, 7 lack only designs

where BIBD-extendable designs have been proven not to exist. For other values of q, one or more

of k = 5, 6, 7 are yet to be solved. See the catalog for details.

The approach of solving only the smallest b and thereafter relying on extendability presumes

existence of the needed BIBDs. They are all known (Mathon and Rosa, 2006) except (v, b, k) =
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(15, 21, 5), which does not exist. Let bq be the smallest b for v = 15, k = 5 and given q. Solution

of all b (= bq + 21s for all s ≥ 0) for k = 5 and q means that a BIBD-extendable design must be

found for both bq and bq + 21. While bq has been solved in every case, bq + 21 has been solved only

for q = 12. Thus as of this writing there is a single design missing for v = 15, k = 5 and each of

q = 2, 4, 6, 8, 10.

The catalog contains all designs with q 6= 0 as described for k = 3, . . . , bv
2c and k = v − 2.

Omission of k = v−1 is because p = 0 ⇒ q = 0 (and a BIBD exists). For other k > bv
2c all E-optimal

designs are found as the complements of all E-optimal designs with block size v − k; discrepancy

matrices for a design and its complement are based on the same graph. Complementation fails only

when the design with smaller k would be single-replicate and thus disconnected; for these few cases

the larger k designs are cataloged.

Block size k = 2 stands apart from other k < v in that the bounds of corollary 3 often fail

to eliminate even unequally replicated competitors relative to the best equireplicate designs. Now

consider, the adjacency matrix of any regular graph is equivalent to a block design with k = 2:

g edges connecting vertices i and i′ correspond to g blocks containing treatments i and i′. Given

v, b, k = 2, q, λ, and an E-best discrepancy matrix ∆, the adjacency matrix ∆ + λ corresponds

to an E-optimal block design within the binary, equireplicate subclass D0(v, b, k) of D(v, b, k). All

discrepancy matrices found here have all entries ≥ −1, so this method fails to produce a design

only if λ = 0 and at least one δii′ = −1 for every E-best discrepancy matrix. Wherever this occurs,

the list of graphs has been extended beyond the E-best as needed until a discrepancy matrix with

all nonnegative entries results. Thus the graph catalog completely solves the E-optimality problem

for k = 2 and v ≤ 15 relative to D0(v, b, k).

6 Discussion

One accomplishment of this paper is the near-complete solution to the E-optimal block design

problem for v ≤ 15. Having the corresponding catalog of designs online changes accessibility for

experimentalists to a wide variety of useful designs from highly problematic to trivial. Existing

catalogs are paper bound, dispersed in journals, and far from comprehensive in not covering all b

and k possibilities for a range of v.
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But mathematical optimality is not the entire story for good designs in experimental practice.

The weakness of the E-criterion, and of A-, of D-, and others, is that they reduce a high-dimensional

problem involving many variances and covariances to a single number. In doing so, they fail to

capture the richness of the many forms of information available in the many competing designs

from which a selection will be made.

The A-criterion (minimize average variance) is especially vulnerable on this point, in that it

usually points to designs based on a single graph as being “best.” This is akin to many routine

statistical problems comparing distributions: sometimes the mean is an appropriate comparative

measure, sometimes it is sharply misleading, and rarely (other than in theory) does it capture all

the relevant aspects of the problem. For choice of block design, there is a (typically ill-specified)

distribution of contrasts of interest with associated variances that are functions of the design. The

problem is to “optimize” that distribution. The mean may do that, but it may not. In any case,

small differences in the mean are usually less meaningful than are other aspects of the distribution.

To clarify the dimensionality problem, consider what it means for one design to dominate

another. Design d1 dominates d2 if Cd1 6= Cd2 and d1 estimates every contrast with variance

no greater than that achieved by d2: l′C−
d1

l ≤ l′C−
d2

l for every contrast vector l ⇔ Cd1 − Cd2 is

nonnegative definite. No nonzero matrix with zero trace can be nonnegative definite, so:

Lemma 7 If d1 and d2 are binary, then d1 does not dominate d2.

Since there is no dominant design, an optimal design will be one which performs well when eval-

uated from several relevant perspectives, which can include any of (i) one or more formal optimality

criteria, (ii) reflection of treatment structure in variances of contrasts, and even (iii) simplicity of in-

terpretation. Many of the E-best discrepancy matrices (including examples 1 and 3) can be written

in a block partitioned form with completely symmetric submatrices on the diagonal and constant

submatrices off-diagonal, affording simplicity in the collection of variances. For instance, the design

of example 3 will estimate elementary contrasts τi− τi′ with three distinct variances, corresponding

to within and between the two groups of sizes 4 and 7 defined by ∆. The best RGD(1) produces

five distinct variances for these contrasts in no discernible pattern.

An advantage of the E-approach as developed here is the revealing of many available information

structures. Being E-optimal, they tend to behave very well with respect to the A-criterion (typically
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A-efficiency > 99%, and < 98% only for b and k both small; see Table 2 for definitions and

specific values). Thus the E-criterion, easier to apply (by virtue of the results here), is also a

highly effective proxy for A that offers more design choices. Users can browse the catalogs of

matrices and designs, weighing the relative merits of competing designs for the experiment at hand.

Alternatively, an experimenter could propose a discrepancy matrix (and tackle the corresponding

design construction problem). As discrepancy matrices, with the constants (v, b, k), carry all of the

information in binary, equireplicate designs, those found here provide standards against which any

proposed alternative can be compared for performance in terms of (i)-(iii) above.

As stated in section 1, the work here is for n a multiple of v, covering a large majority of applica-

tions. When this does not hold, equireplication is not possible, nor is the decomposition (3) for ∆d

of form (4). It is also known that E-optimal block designs in this case need not be binary (Morgan

and Uddin, 1995). Work is in progress for approaching unequally replicated designs through lemma

2, but the route is not through regular graphs. Small cases can be solved enumeratively if restricted

to binary designs; a catalog for v + b ≤ 16 can be found at designtheory.org.

Finally, the John-Mitchell conjecture is no longer generally viable for E-optimality. Constantine

(1986) provided the first counterexample, for (v, b, k) = (54, 135, 2). Bagchi (1994) then found

designs for v ≥ 26, v ≡ 2 (mod) 4 which are E-better then RGD(1)s. The combinations found

here for which no E-best graph is 1-regular are (v, q) = (7, 2), (11, 4), (12, 3), (13, 4), (13, 6), (14, 3),

(14, 5), and (15, 4), comprising many values of k and infinitely many b for which RGD(1)s must be

E-inferior. The relative improvement is reflected in the ratios of e-values for these graphs relative

to the best of the 1-regular graphs: respectively 1.25, 1.40, 1.53, 1.38, 1.30, 1.41, 1.53, 1.62. For 27

other pairs (v, q) with v ≤ 15, 1-regular graphs are not uniquely E-best (see Table 1). Many authors

(e.g. Jacroux, 1985; Cheng and Constantine, 1986; Cheng, 1992) have worked to show optimality

and high efficiency for RGD(1)s, and this paper does not contradict those results. What this paper

says is that there are often many good designs other than RGD(1)s, that a view of optimality that

extends beyond minimization of a single criterion will in any case lead to consideration of designs

other than RGD(1)s, and that such a view is necessary for skillful practice in the art of designing

an experiment. Moreover, routine statistical application requires that designs be readily available,

a requirement the online catalog addresses.
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A Bounds for the e-value of ∆d

As noted earlier, lemma 2 can be applied to any symmetric, nonnegative definite matrix with zero

row sums. The nonnegative condition can be set aside to bound the smallest eigenvalue other than

one zero. Write Cd = vλ+q
k (I− 1

vJ)− 1
k ∆̃d where ∆̃d = ∆d− q

vJ = ((δ̃dii′)). Corollary 4 says work can

proceed using ∆̃d rather than Cd, freeing the problem from dependence on b, k, and λ. Minimizing

the e-value of ∆d is equivalent to maximizing ẽd1, the smallest eigenvalue (after setting one zero

aside) of −∆̃d. Analogous to part (iii) of corollary 3, ẽd1 ≤ −v(
∑

i∈H δ̃dii +2
∑ ∑

i<i‘∈H δ̃dii′)/h(v−
h), which provides a bound for examining feasibility of individual discrepancy values. For instance,

taking h = 2, if some δdii′ = 2 then this inequality reduces to ẽd1 ≤ 2(q − v)/(v − 2). Since e-value

= −ẽd1, existence of a 1-regular graph with e-value less than 2(v − q)/(v − 2) eliminates δdii′ = 2

from consideration. This (and similar arguments for negative discrepancies) is the technical reason

the search strategy in section 3 begins with m = 1.

B Optimality in the full class

Equation 3 says that a design with E-best discrepancy matrix is E-optimal over all equireplicate,

binary designs. Remaining competitors are eliminated using corollary 3(i):

µd1 ≤
(

v

v − 1

)
(r − 1)(k − 1)

k
for any unequally replicated design (5)

µd1 ≤
(

v

v − 1

)
r(k − 1)− 2

k
for any nonbinary design. (6)

For k > 2, the bound (6), used in lemma 6, is at least as large as (5). In every tabled case for v ≤ 15

and k > 2, the BIBD-extendable designs exceed bound (6). Let d∗ ∈ D(v, b∗, k) be one of the tabled,

BIBD-extendable designs, and let d̃ ∈D(v, b̃, k) be a BIBD. Writing b̄ = b + b̃, let d̄∗ ∈ D(v, b̄, k)

denote the design whose blocks are the b̄ blocks of d∗ and d̃ together. Suppose there is a nonbinary

(or unequally replicated) design d̄ ∈ D(v, b̄, k) for which µd̄1 > µd̄∗1. Write its information matrix

as Cd̄ = [Cd̄ − λ̃v
k (I − 1

vJ)] + λ̃v
k (I − 1

vJ) = Cd̂ + λ̃v
k (I − 1

vJ). Then Cd̂ is a symmetric matrix of

rank v− 1, and whether or not a design exists with this information matrix, the diagonal elements

of Cd̂ are those of some nonbinary (or unequally replicated) design in D(v, b∗, k). Thus (6) holds

for d̂ and consequently µd̂1 < µd∗1. But µd̂1 = µd̄1 − λ̃v
k > µd̄∗1 − λ̃v

k = µd∗1, a contradiction. This
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completes the proof of lemma 6.

Non-extendable designs often beat (5) and (6) as well. The 7-block design in example 2, with

discrepancy matrix ∆1 of example 1, has µd1 = vλ+q−e
k = 7(3)+2−1.247

5 = 4.35 > 4.2, the larger of

the two bounds. Since no design exists for any discrepancy matrix that is E-better than ∆1, this

non-extendable design is E-optimal over all of D(7, 7, 5). In other settings where no extendable

design exists, more work is needed. A typical argument is shown next.

For (v, b, k) = (15, 10, 3) the associated parameters are (r, λ, q) = (2, 0, 4). Here it was possible

to generate all RGD(1)s. The uniquely best of these has µd1 = 2/3, surpassing neither (5) nor

(6). Its dual design with (v, b, k) = (10, 15, 2) has smallest eigenvalue 1 (E-ordering is preserved in

the class of equireplicate duals - see Shah and Sinha, 1989, pp. 27-8). If some pair of treatments

concurs twice in an equireplicate design d̄ in the dual setting, then by the third part of corollary 3

with h = 2, µd̄1 ≤ 0.625 < 1. Thus among equireplicate duals, the best must be a RGD(1), which

implies the same for equireplicate designs in D(15, 10, 3).

It remains to rule out unequally replicated designs, binary or not. Take treatment 1 to have

replication 1 and notice that the largest possible value of Cdii is 20/k. If some treatment occurs

twice in the block with treatment 1, then there is a 2× 2 submatrix of Cd of the form

1
k

(
2 −2

−2 x

)
for integer 2 ≤ x ≤ 20.

Evaluating this submatrix for each x using corollary 4 rules out this possibility. For two distinct

treatments in the block with treatment 1, there is a 3× 3 submatrix of the form

1
k




2 −1 −1
−1 x −z
−1 −z y


 for postive integers 1 ≤ x ≤ y ≤ 20 and z ≥ max{1, x + y − 10}.

Another round of applications of corollary 4 for the x, y, z combinations completes the result.

Ruling out existence of a design with a specified discrepancy matrix is sometimes possible

through computer search. When not, a frequently successful method starts with a subset of v1

treatments, k ≤ v1 < v. Let xi be the number of blocks containing i treatments from that subset.

Then
∑k

i=1 xi ≤ b,
∑k

i=1 ixi = rv1, and
∑k

i=1 i(i− 1)xi = λv1(v1− 1) + s, where s is the sum of the

elements of the corresponding discrepancy submatrix. If there are no nonnegative integer solutions

to this system, then there is no design. One example is (v, b, k) = (7, 7, 5) of example 2, which

admits no solution for treatments 1, . . . , 5 in ∆
c

2 of example 1.
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Table 1: Number of E-best graphs by type

v q # E-best Graphs #(1, 2, 2c, 3c)
4 1 2 (1, 0, 1, 0)

2 1 (1, 0, 0, 0)
5 2 1 (1, 0, 0, 0)
6 1 3 (1, 0, 2, 0)
6 2 2 (1, 0, 1, 0)

3 1 (1, 0, 0, 0)
4 1 (1, 0, 0, 0)

7 2 1 (0, 0, 1, 0)
4 1 (1, 0, 0, 0)

8 1 5 (1, 0, 4, 0)
2 2 (1, 0, 1, 0)
3 6 (2, 0, 4, 0)
4 1 (1, 0, 0, 0)
5 1 (1, 0, 0, 0)
6 1 (1, 0, 0, 0)

9 2 1 (1, 0, 0, 0)
4 13 (4, 0, 9, 0)
6 1 (1, 0, 0, 0)

10 1 7 (1, 0, 6, 0)
2 2 (1, 0, 1, 0)
3 7 (1, 0, 6, 0)
4 3 (1, 0, 2, 0)
5 1 (1, 0, 0, 0)
6 89 (6, 26, 5, 52)
7 1 (1, 0, 0, 0)
8 1 (1, 0, 0, 0)

11 2 1 (1, 0, 0, 0)
4 1 (0, 0, 1, 0)
6 8 (1, 0, 7, 0)
8 1 (1, 0, 0, 0)

12 1 11 (1, 0, 10, 0)
2 2 (1, 0, 1, 0)
3 4 (0, 0, 4, 0)
4 17 (1, 0, 16, 0)
5 56 (7, 0, 49, 0)
6 1 (1, 0, 0, 0)
7 480 (15, 101, 55, 309)
8 1 (1, 0, 0, 0)
9 1 (1, 0, 0, 0)
10 1 (1, 0, 0, 0)

13 2 1 (1, 0, 0, 0)
4 1 (0, 0, 1, 0)
6 1 (0, 0, 1, 0)
8 18 (2, 0, 16, 0)
10 1 (1, 0, 0, 0)

14 1 15 (1, 0, 14, 0)
2 2 (1, 0, 1, 0)
3 1 (0, 0, 1, 0)
4 1 (1, 0, 0, 0)
5 1 (0, 0, 1, 0)
6 4 (1, 0, 3, 0)
7 1 (1, 0, 0, 0)
8 2213 (21, 158, 198, 1836)
9 24 (2, 0, 22, 0)
10 11 (6, 0, 5, 0)
11 1 (1, 0, 0, 0)
12 1 (1, 0, 0, 0)

15 2 1 (1, 0, 0, 0)
4 16 (0, 0, 16, 0)
6 234 (7, 0, 227, 0)
8 19 (2, 0, 17, 0)
10 1 (1, 0, 0, 0)
12 1 (1, 0, 0, 0)



Table 2: Worst A-efficiencies for E-best non-RGD(1)s

v q (b, k, A-efficiency)
6 1 (6, 3, .944), (3, 4, .944)
6 2 (12, 3, .993), (6, 4, .993)
7 2 (7, 5, .994)
8 1 (48, 3, .996), (10, 4, .983), (48, 5, .999), (4, 6, .983)
8 2 (40, 3, .999), (6, 4, .990), (40, 5, .999), (8, 6, .999)
8 3 (32, 3, .997), (16, 4, .997), (32, 5, .999), (12, 6, .999)
9 4 (6, 3, .880), (9, 4, .980), (9, 5, .992), (6, 6, .992), (18, 7, .999)
10 1 (14, 5, .992), (5, 8, .992)
10 2 (10, 5, .998), (10, 8, .999)
10 3 (20, 3, .986), (10, 4, .986), (6, 5, .986), (10, 6, .997), (20, 7, .999), (15, 8, .999)
10 4 (20, 5, .999), (20, 8, .999)
10 6 (10, 3, .854), (5, 4, .854), (12, 5, .981), (5, 6, .960), (10, 7, .992), (30, 8, .999)
11 4 (44, 3, .997), (22, 4, .997), (22, 7, .999), (44, 8, .999)
11 6 (11, 3, .951), (33, 4, .998), (33, 7, .999), (11, 8, .999), (33, 9, .999)
12 1 (24, 3, .965), (12, 4, .965), (60, 5, .999), (18, 6, .996), (60, 7, .999), (12, 8, .997), (24, .999), (6, 10, .996)
12 2 (48, 3, .999), (24, 4, .999), (120, 5, .999), (14, 6, .999), (120, 7, .999), (24, 8, .999), (4, 9, .999), (12, 10, .999)
12 3 (28, 3, .986), (36, 4, .997), (48, 5, .999), (10, 6, .994), (48, 7, .999), (3, 8, .986), (28, 9, .999), (18, 10, .999)
12 4 (8, 3, .930), (15, 4, .989), (108, 5, .999), (6, 6, .989), (108, 7, .999), (15, 8, .999), (8, 9, .998), (24, 10, .999)
12 5 (32, 3, .984), (27, 4, .993), (36, 5, .998), (24, 6, .998), (36, 7, .999), (27, 8, .999), (32, 9, .999), (30, 10, .999)
12 7 (36, 3, .966), (18, 4, .966), (24, 5, .990), (16, 6, .990), (24, 7, .997), (18, 8, .997), (36, 9, .999), (42, 10, .999)

Shown are (v, q) for which 1-regular graphs are either suboptimal or not uniquely best. A-efficiencies compare

A-worst of E-best non-RGD(1)s versus A-best of E-best RGD(1)s. Evaluation for each (v, q, k) is for smallest

possible b. Efficiencies increase quickly with b. Of the 121 cases with smallest b for v = 13, 14, 15, one A-efficiency

is .924; two are .967; one is .977; five are in [.980, .990]; all others are > .990. Notice that even when there are many

competing matrices, the range of A-behavior is very small (e.g. 480 E-best matrices for (v, q) = (12, 7), but almost

all A-efficiencies ≥ .990). All values truncated to three places. Only rarely do A-best and E-best among RGD(1)s

fail to coincide (see John and Mitchell, 1977).

22


