Here in its entirety is the example which we have seen in parts throughout this document.
<?xml version="1.0"?> <list_of_designs design_type="block_design" dtrs_protocol="1.1" no_designs="1" pairwise_nonisomorphic="true" xmlns="http://designtheory.org/xml-namespace"> <block_design b="7" id="t2-v7-k3-L1-1" v="7"> <blocks ordered="true"> <block><z>0</z><z>1</z><z>2</z></block> <block><z>0</z><z>3</z><z>4</z></block> <block><z>0</z><z>5</z><z>6</z></block> <block><z>1</z><z>3</z><z>5</z></block> <block><z>1</z><z>4</z><z>6</z></block> <block><z>2</z><z>3</z><z>6</z></block> <block><z>2</z><z>4</z><z>5</z></block> </blocks> <indicators> <repeated_blocks flag="false"> </repeated_blocks> <resolvable flag="false"> </resolvable> <affine_resolvable flag="false"> </affine_resolvable> <equireplicate flag="true" r="3"> </equireplicate> <constant_blocksize flag="true" k="3"> </constant_blocksize> <t_design flag="true" maximum_t="2"> </t_design> <connected flag="true" no_components="1"> </connected> <pairwise_balanced flag="true" lambda="1"> </pairwise_balanced> <variance_balanced flag="true"> </variance_balanced> <efficiency_balanced flag="true"> </efficiency_balanced> <cyclic flag="true"> </cyclic> <one_rotational flag="false"> </one_rotational> </indicators> <combinatorial_properties> <point_concurrences> <function_on_ksubsets_of_indices domain_base="points" k="1" n="7" ordered="true" title="replication_numbers"> <map> <preimage> <entire_domain> </entire_domain> </preimage> <image><z>3</z></image> </map> </function_on_ksubsets_of_indices> <function_on_ksubsets_of_indices domain_base="points" k="2" n="7" ordered="true" title="pairwise_point_concurrences"> <map> <preimage> <entire_domain> </entire_domain> </preimage> <image><z>1</z></image> </map> </function_on_ksubsets_of_indices> </point_concurrences> <block_concurrences> <function_on_ksubsets_of_indices domain_base="blocks" k="1" n="7" ordered="unknown" title="block_sizes"> <map> <preimage_cardinality><z>7</z></preimage_cardinality> <image><z>3</z></image> </map> </function_on_ksubsets_of_indices> <function_on_ksubsets_of_indices domain_base="blocks" k="2" n="7" ordered="unknown" title="pairwise_block_intersection_sizes"> <map> <preimage_cardinality><z>21</z></preimage_cardinality> <image><z>1</z></image> </map> </function_on_ksubsets_of_indices> </block_concurrences> <t_design_properties> <parameters b="7" k="3" lambda="1" r="3" t="2" v="7"> </parameters> <square flag="true"> </square> <projective_plane flag="true"> </projective_plane> <affine_plane flag="false"> </affine_plane> <steiner_system flag="true" t="2"> </steiner_system> <steiner_triple_system flag="true"> </steiner_triple_system> </t_design_properties> <alpha_resolvable> <index_flag flag="true" index="3"> </index_flag> </alpha_resolvable> <t_wise_balanced> <index_flag flag="true" index="1"> </index_flag> <index_flag flag="true" index="2"> </index_flag> </t_wise_balanced> </combinatorial_properties> <automorphism_group> <permutation_group degree="7" domain="points" order="168"> <generators> <permutation> <z>1</z> <z>0</z> <z>2</z> <z>3</z> <z>5</z> <z>4</z> <z>6</z> </permutation> <permutation> <z>0</z> <z>2</z> <z>1</z> <z>3</z> <z>4</z> <z>6</z> <z>5</z> </permutation> <permutation> <z>0</z> <z>3</z> <z>4</z> <z>1</z> <z>2</z> <z>5</z> <z>6</z> </permutation> <permutation> <z>0</z> <z>1</z> <z>2</z> <z>5</z> <z>6</z> <z>3</z> <z>4</z> </permutation> <permutation> <z>0</z> <z>1</z> <z>2</z> <z>4</z> <z>3</z> <z>6</z> <z>5</z> </permutation> </generators> <permutation_group_properties> <primitive flag="true"> </primitive> <generously_transitive flag="true"> </generously_transitive> <multiplicity_free flag="true"> </multiplicity_free> <stratifiable flag="true"> </stratifiable> <no_orbits value="1"> </no_orbits> <degree_transitivity value="2"> </degree_transitivity> <rank value="2"> </rank> <cycle_type_representatives> <cycle_type_representative> <permutation> <z>1</z> <z>3</z> <z>5</z> <z>2</z> <z>0</z> <z>6</z> <z>4</z> </permutation> <cycle_type ordered="true"> <z>7</z> </cycle_type> <no_having_cycle_type> <z>48</z> </no_having_cycle_type> </cycle_type_representative> <cycle_type_representative> <permutation> <z>0</z> <z>2</z> <z>1</z> <z>5</z> <z>6</z> <z>4</z> <z>3</z> </permutation> <cycle_type ordered="true"> <z>1</z> <z>2</z> <z>4</z> </cycle_type> <no_having_cycle_type> <z>42</z> </no_having_cycle_type> </cycle_type_representative> <cycle_type_representative> <permutation> <z>0</z> <z>3</z> <z>4</z> <z>5</z> <z>6</z> <z>1</z> <z>2</z> </permutation> <cycle_type ordered="true"> <z>1</z> <z>3</z> <z>3</z> </cycle_type> <no_having_cycle_type> <z>56</z> </no_having_cycle_type> </cycle_type_representative> <cycle_type_representative> <permutation> <z>0</z> <z>1</z> <z>2</z> <z>4</z> <z>3</z> <z>6</z> <z>5</z> </permutation> <cycle_type ordered="true"> <z>1</z> <z>1</z> <z>1</z> <z>2</z> <z>2</z> </cycle_type> <no_having_cycle_type> <z>21</z> </no_having_cycle_type> </cycle_type_representative> <cycle_type_representative> <permutation> <z>0</z> <z>1</z> <z>2</z> <z>3</z> <z>4</z> <z>5</z> <z>6</z> </permutation> <cycle_type ordered="true"> <z>1</z> <z>1</z> <z>1</z> <z>1</z> <z>1</z> <z>1</z> <z>1</z> </cycle_type> <no_having_cycle_type> <z>1</z> </no_having_cycle_type> </cycle_type_representative> </cycle_type_representatives> </permutation_group_properties> </permutation_group> <automorphism_group_properties> <block_primitive flag="true"> </block_primitive> <no_block_orbits value="1"> </no_block_orbits> <degree_block_transitivity value="2"> </degree_block_transitivity> </automorphism_group_properties> </automorphism_group> <statistical_properties precision="9"> <canonical_variances no_distinct="1" ordered="true"> <value multiplicity="6"><d>0.428571429</d></value> </canonical_variances> <pairwise_variances> <function_on_ksubsets_of_indices domain_base="points" k="2" n="7" ordered="true"> <map> <preimage> <entire_domain> </entire_domain> </preimage> <image><d>0.857142857</d></image> </map> </function_on_ksubsets_of_indices> </pairwise_variances> <optimality_criteria> <phi_0> <value><d>-5.08378716</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </phi_0> <phi_1> <value><d>0.428571429</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </phi_1> <phi_2> <value><d>0.183673469</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </phi_2> <maximum_pairwise_variances> <value><d>0.857142857</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </maximum_pairwise_variances> <E_criteria> <E_value index="1"> <value><d>0.428571429</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> <E_value index="2"> <value><d>0.857142857</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> <E_value index="3"> <value><d>1.28571429</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> <E_value index="4"> <value><d>1.71428571</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> <E_value index="5"> <value><d>2.14285714</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> <E_value index="6"> <value><d>2.57142857</d></value> <absolute_efficiency><z>1</z></absolute_efficiency> <calculated_efficiency><z>1</z></calculated_efficiency> </E_value> </E_criteria> </optimality_criteria> <other_ordering_criteria> <trace_of_square_of_C> <value><d>32.6666667</d></value> <absolute_comparison><z>1</z></absolute_comparison> <calculated_comparison><z>1</z></calculated_comparison> </trace_of_square_of_C> <max_min_ratio_canonical_variances> <value><d>1.0</d></value> <absolute_comparison><z>1</z></absolute_comparison> <calculated_comparison><z>1</z></calculated_comparison> </max_min_ratio_canonical_variances> <max_min_ratio_pairwise_variances> <value><d>1.0</d></value> <absolute_comparison><z>1</z></absolute_comparison> <calculated_comparison><z>1</z></calculated_comparison> </max_min_ratio_pairwise_variances> <no_distinct_canonical_variances> <value><z>1</z></value> <absolute_comparison><z>1</z></absolute_comparison> <calculated_comparison><z>1</z></calculated_comparison> </no_distinct_canonical_variances> <no_distinct_pairwise_variances> <value><z>1</z></value> <absolute_comparison><z>1</z></absolute_comparison> <calculated_comparison><z>1</z></calculated_comparison> </no_distinct_pairwise_variances> </other_ordering_criteria> <canonical_efficiency_factors no_distinct="1" ordered="true"> <value multiplicity="6"><d>0.777777778</d></value> </canonical_efficiency_factors> <functions_of_efficiency_factors> <harmonic_mean alias="A"> <value><d>0.777777778</d></value> </harmonic_mean> <geometric_mean alias="D"> <value><d>0.777777778</d></value> </geometric_mean> <minimum alias="E"> <value><d>0.777777778</d></value> </minimum> </functions_of_efficiency_factors> </statistical_properties> </block_design> <info> <creator> <software> bdstat 0.5/13 </software> </creator> <creator> <software> Design 1.0rev8/51 </software> </creator> <reference> Any book on combinatorial design theory </reference> <note> Fano plane </note> <note> The unique 2-(7,3,1) up to isomorphism </note> </info> </list_of_designs>