Here in its entirety is the example which we have seen in parts throughout this document.
<?xml version="1.0"?>
<list_of_designs design_type="block_design" dtrs_protocol="1.1" no_designs="1"
pairwise_nonisomorphic="true" xmlns="http://designtheory.org/xml-namespace">
<block_design b="7" id="t2-v7-k3-L1-1" v="7">
<blocks ordered="true">
<block><z>0</z><z>1</z><z>2</z></block>
<block><z>0</z><z>3</z><z>4</z></block>
<block><z>0</z><z>5</z><z>6</z></block>
<block><z>1</z><z>3</z><z>5</z></block>
<block><z>1</z><z>4</z><z>6</z></block>
<block><z>2</z><z>3</z><z>6</z></block>
<block><z>2</z><z>4</z><z>5</z></block>
</blocks>
<indicators>
<repeated_blocks flag="false">
</repeated_blocks>
<resolvable flag="false">
</resolvable>
<affine_resolvable flag="false">
</affine_resolvable>
<equireplicate flag="true" r="3">
</equireplicate>
<constant_blocksize flag="true" k="3">
</constant_blocksize>
<t_design flag="true" maximum_t="2">
</t_design>
<connected flag="true" no_components="1">
</connected>
<pairwise_balanced flag="true" lambda="1">
</pairwise_balanced>
<variance_balanced flag="true">
</variance_balanced>
<efficiency_balanced flag="true">
</efficiency_balanced>
<cyclic flag="true">
</cyclic>
<one_rotational flag="false">
</one_rotational>
</indicators>
<combinatorial_properties>
<point_concurrences>
<function_on_ksubsets_of_indices domain_base="points" k="1"
n="7" ordered="true" title="replication_numbers">
<map>
<preimage>
<entire_domain>
</entire_domain>
</preimage>
<image><z>3</z></image>
</map>
</function_on_ksubsets_of_indices>
<function_on_ksubsets_of_indices domain_base="points" k="2"
n="7" ordered="true" title="pairwise_point_concurrences">
<map>
<preimage>
<entire_domain>
</entire_domain>
</preimage>
<image><z>1</z></image>
</map>
</function_on_ksubsets_of_indices>
</point_concurrences>
<block_concurrences>
<function_on_ksubsets_of_indices domain_base="blocks" k="1"
n="7" ordered="unknown" title="block_sizes">
<map>
<preimage_cardinality><z>7</z></preimage_cardinality>
<image><z>3</z></image>
</map>
</function_on_ksubsets_of_indices>
<function_on_ksubsets_of_indices domain_base="blocks" k="2"
n="7" ordered="unknown"
title="pairwise_block_intersection_sizes">
<map>
<preimage_cardinality><z>21</z></preimage_cardinality>
<image><z>1</z></image>
</map>
</function_on_ksubsets_of_indices>
</block_concurrences>
<t_design_properties>
<parameters b="7" k="3" lambda="1" r="3" t="2" v="7">
</parameters>
<square flag="true">
</square>
<projective_plane flag="true">
</projective_plane>
<affine_plane flag="false">
</affine_plane>
<steiner_system flag="true" t="2">
</steiner_system>
<steiner_triple_system flag="true">
</steiner_triple_system>
</t_design_properties>
<alpha_resolvable>
<index_flag flag="true" index="3">
</index_flag>
</alpha_resolvable>
<t_wise_balanced>
<index_flag flag="true" index="1">
</index_flag>
<index_flag flag="true" index="2">
</index_flag>
</t_wise_balanced>
</combinatorial_properties>
<automorphism_group>
<permutation_group degree="7" domain="points" order="168">
<generators>
<permutation>
<z>1</z>
<z>0</z>
<z>2</z>
<z>3</z>
<z>5</z>
<z>4</z>
<z>6</z>
</permutation>
<permutation>
<z>0</z>
<z>2</z>
<z>1</z>
<z>3</z>
<z>4</z>
<z>6</z>
<z>5</z>
</permutation>
<permutation>
<z>0</z>
<z>3</z>
<z>4</z>
<z>1</z>
<z>2</z>
<z>5</z>
<z>6</z>
</permutation>
<permutation>
<z>0</z>
<z>1</z>
<z>2</z>
<z>5</z>
<z>6</z>
<z>3</z>
<z>4</z>
</permutation>
<permutation>
<z>0</z>
<z>1</z>
<z>2</z>
<z>4</z>
<z>3</z>
<z>6</z>
<z>5</z>
</permutation>
</generators>
<permutation_group_properties>
<primitive flag="true">
</primitive>
<generously_transitive flag="true">
</generously_transitive>
<multiplicity_free flag="true">
</multiplicity_free>
<stratifiable flag="true">
</stratifiable>
<no_orbits value="1">
</no_orbits>
<degree_transitivity value="2">
</degree_transitivity>
<rank value="2">
</rank>
<cycle_type_representatives>
<cycle_type_representative>
<permutation>
<z>1</z>
<z>3</z>
<z>5</z>
<z>2</z>
<z>0</z>
<z>6</z>
<z>4</z>
</permutation>
<cycle_type ordered="true">
<z>7</z>
</cycle_type>
<no_having_cycle_type>
<z>48</z>
</no_having_cycle_type>
</cycle_type_representative>
<cycle_type_representative>
<permutation>
<z>0</z>
<z>2</z>
<z>1</z>
<z>5</z>
<z>6</z>
<z>4</z>
<z>3</z>
</permutation>
<cycle_type ordered="true">
<z>1</z>
<z>2</z>
<z>4</z>
</cycle_type>
<no_having_cycle_type>
<z>42</z>
</no_having_cycle_type>
</cycle_type_representative>
<cycle_type_representative>
<permutation>
<z>0</z>
<z>3</z>
<z>4</z>
<z>5</z>
<z>6</z>
<z>1</z>
<z>2</z>
</permutation>
<cycle_type ordered="true">
<z>1</z>
<z>3</z>
<z>3</z>
</cycle_type>
<no_having_cycle_type>
<z>56</z>
</no_having_cycle_type>
</cycle_type_representative>
<cycle_type_representative>
<permutation>
<z>0</z>
<z>1</z>
<z>2</z>
<z>4</z>
<z>3</z>
<z>6</z>
<z>5</z>
</permutation>
<cycle_type ordered="true">
<z>1</z>
<z>1</z>
<z>1</z>
<z>2</z>
<z>2</z>
</cycle_type>
<no_having_cycle_type>
<z>21</z>
</no_having_cycle_type>
</cycle_type_representative>
<cycle_type_representative>
<permutation>
<z>0</z>
<z>1</z>
<z>2</z>
<z>3</z>
<z>4</z>
<z>5</z>
<z>6</z>
</permutation>
<cycle_type ordered="true">
<z>1</z>
<z>1</z>
<z>1</z>
<z>1</z>
<z>1</z>
<z>1</z>
<z>1</z>
</cycle_type>
<no_having_cycle_type>
<z>1</z>
</no_having_cycle_type>
</cycle_type_representative>
</cycle_type_representatives>
</permutation_group_properties>
</permutation_group>
<automorphism_group_properties>
<block_primitive flag="true">
</block_primitive>
<no_block_orbits value="1">
</no_block_orbits>
<degree_block_transitivity value="2">
</degree_block_transitivity>
</automorphism_group_properties>
</automorphism_group>
<statistical_properties precision="9">
<canonical_variances no_distinct="1" ordered="true">
<value multiplicity="6"><d>0.428571429</d></value>
</canonical_variances>
<pairwise_variances>
<function_on_ksubsets_of_indices domain_base="points" k="2"
n="7" ordered="true">
<map>
<preimage>
<entire_domain>
</entire_domain>
</preimage>
<image><d>0.857142857</d></image>
</map>
</function_on_ksubsets_of_indices>
</pairwise_variances>
<optimality_criteria>
<phi_0>
<value><d>-5.08378716</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</phi_0>
<phi_1>
<value><d>0.428571429</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</phi_1>
<phi_2>
<value><d>0.183673469</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</phi_2>
<maximum_pairwise_variances>
<value><d>0.857142857</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</maximum_pairwise_variances>
<E_criteria>
<E_value index="1">
<value><d>0.428571429</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
<E_value index="2">
<value><d>0.857142857</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
<E_value index="3">
<value><d>1.28571429</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
<E_value index="4">
<value><d>1.71428571</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
<E_value index="5">
<value><d>2.14285714</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
<E_value index="6">
<value><d>2.57142857</d></value>
<absolute_efficiency><z>1</z></absolute_efficiency>
<calculated_efficiency><z>1</z></calculated_efficiency>
</E_value>
</E_criteria>
</optimality_criteria>
<other_ordering_criteria>
<trace_of_square_of_C>
<value><d>32.6666667</d></value>
<absolute_comparison><z>1</z></absolute_comparison>
<calculated_comparison><z>1</z></calculated_comparison>
</trace_of_square_of_C>
<max_min_ratio_canonical_variances>
<value><d>1.0</d></value>
<absolute_comparison><z>1</z></absolute_comparison>
<calculated_comparison><z>1</z></calculated_comparison>
</max_min_ratio_canonical_variances>
<max_min_ratio_pairwise_variances>
<value><d>1.0</d></value>
<absolute_comparison><z>1</z></absolute_comparison>
<calculated_comparison><z>1</z></calculated_comparison>
</max_min_ratio_pairwise_variances>
<no_distinct_canonical_variances>
<value><z>1</z></value>
<absolute_comparison><z>1</z></absolute_comparison>
<calculated_comparison><z>1</z></calculated_comparison>
</no_distinct_canonical_variances>
<no_distinct_pairwise_variances>
<value><z>1</z></value>
<absolute_comparison><z>1</z></absolute_comparison>
<calculated_comparison><z>1</z></calculated_comparison>
</no_distinct_pairwise_variances>
</other_ordering_criteria>
<canonical_efficiency_factors no_distinct="1" ordered="true">
<value multiplicity="6"><d>0.777777778</d></value>
</canonical_efficiency_factors>
<functions_of_efficiency_factors>
<harmonic_mean alias="A">
<value><d>0.777777778</d></value>
</harmonic_mean>
<geometric_mean alias="D">
<value><d>0.777777778</d></value>
</geometric_mean>
<minimum alias="E">
<value><d>0.777777778</d></value>
</minimum>
</functions_of_efficiency_factors>
</statistical_properties>
</block_design>
<info>
<creator>
<software>
bdstat 0.5/13
</software>
</creator>
<creator>
<software>
Design 1.0rev8/51
</software>
</creator>
<reference>
Any book on combinatorial design theory
</reference>
<note>
Fano plane
</note>
<note>
The unique 2-(7,3,1) up to isomorphism
</note>
</info>
</list_of_designs>