
Square 2-designs

Square 2-designs are variously known as symmetric designs, symmetric BIBDs,
and projective designs. The definition does not imply any symmetry of the design,
and the term ‘projective designs’, chosen by Dembowski by analogy with ‘affine
designs’, has not caught on. We call these designs square because their incidence
matrices are.

1 Definition

Suppose thatv,k,λ are positive integers withv> k> λ > 0. A square2-(v,k,λ)
designis a block design satisfying

(A) There arev points.

(A′) There arev blocks.

(B) Any block is incident withk points.

(B′) Any point is incident withk blocks.

(C) Any two blocks are incident withλ points.

(C′) Any two points are incident withλ blocks.

(D) k(k−1) = (v−1)λ.

Of course these conditions are not all independent. If (A), (B) and (C′) hold,
then we have a 2-design (a BIBD), and the number of blocks isv(v−1)λ/k(k−1).
So, if (D) also holds, then the number of blocks is also equal tov, and so (A′) holds
(and indeed, all the remaining conditions do).

In this context, note thatFisher’s Inequalityshows that a 2-design has at least
as many blocks as points, and that equality implies that any two blocks meet in a
constant number of points. Also, if (C) and (C′) both hold, then the dual is also a
2-design, and so Fisher’s inequality and its dual imply that the numbers of points
and blocks are equal. So (A), (B), (C′) and any one of the other conditions imply
all the rest.

Another characterisation is as follows.
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Proposition 1 Suppose that an incidence structure D has more than one point
and more than one block. Suppose that any two points are incident withλ blocks,
and any two blocks withλ′ points. Thenλ = λ′, and one of the following occurs:

(a) D is a square2-design;

(b) λ> 1, and D hasλ points andλ blocks, any point and block being incident;

(c) λ = 1, and D has one block incident with every point, any other block being
incident with just one point, and dually;

(d) λ = 1, and D has one block incident with every point except one, any other
block being incident with just two points, and dually.

2 Properties

Theadjacency matrixof a square 2-design is thev×v matrix with rows indexed
by blocks and columns by points, the(b,x) entry being 1 ifx is incident withb
and 0 otherwise. It satisfies

AJ = JA = kJ,

AA> = A>A = (k−λ)I + λJ,

whereI andJ are the identity and all-1 matrices of sizev×v.
It follows from these equations thatA is invertible; its determinant is±v(k−

λ)(v−1)/2.
A square 2-design withλ = 1 is called aprojective plane. The integern =

k− 1 is its order. The parameters of a projective plane of ordern are given by
v = n2 + n+ 1, k = n+ 1. The blocks of a projective plane are often calledlines;
two points lie on a unique line and two lines meet in a unique point.

Thedualof a square 2-design (obtained by interchanging the labels ‘point’ and
‘block’) is again a square 2-design with the same parameters. This holds because
the duals of (A)–(C) above are (A′)–(C′). Its incidence matrix is the transpose of
that of the original design.

Thecomplementof a square 2-design is the design on the same point set whose
blocks are the complements of the blocks of the original design. In other words,
we interchange ‘incidence’ and ‘non-incidence’ between points and blocks. An
inclusion-exclusion argument shows that the complement of a square 2-(v,k,λ)
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design is a square 2-(v,v− k,v− 2k + λ). If the original design has incidence
matrix A, then the incidence matrix of the complement isJ−A. (Actually this
is not quite true. The sets containing all but one point are the blocks of a square
2-(v,v−1,v−2) design. The complement is formally a 2-(v,1,0) design, but this
does not satisfy our requirement thatλ> 0. These are the only exceptions.)

3 Existence and non-existence

The parameters(v,k,λ) of a square 2-design satisfy equation (D) above:

(v−1)λ = k(k−1).

Not every parameter triple withv> k> λ > 0 is realised by a square 2-design.
TheBruck–Ryser–Chowla Theoremgives a further necessary condition:

Proposition 2 Suppose that a square2-(v,k,λ) design exists.

(a) If v is even, then k−λ is a square.

(b) If v is odd, then the equation

z2 = (−1)(v−1)/2λx2 +(k−λ)y2

has a solution in integers(x,y,z), not all zero.

See, for example, [4] for a proof.
A consequence of this theorem is that, if the ordern of a projective plane is

congruent to 1 or 2 mod 4, thenn is the sum of two integer squares. So there is no
projective plane of order 6.

Equation (D) and the Bruck–Ryser–Chowla Theorem are not sufficient for the
existence of a design. However, only a single instance (up to complementation)
is known of a parameter set satisfying the BRC Theorem for which no design
exists. This is the result of a massive computation by Lamet al., which showed
the following:

Proposition 3 There is no projective plane of order10.

There are many constructions of square 2-designs. What follows is by no
means a complete survey, but mentions some of the most important types.
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Projective spaces. The projective space PG(n,q) is constructed from an(n+1)-
dimensional vector spaceV over the finite field GF(q), whereq is a prime power.
The objects or varieties of the projective space are all the subspaces ofV apart
from {0} andV; two subspaces are incident if one contains the other. Apoint
is a 1-dimensional subspace, and ahyperplaneis a subspace of codimension 1.
Now the points and hyperplanes form a square 2-(qn+1−1)/(q−1),(qn−1)/(q−
1),(qn−1− 1)/(q− 1) design. In particular, ifn = 2, this design is a projective
plane of orderq.

Difference sets. Let G be a group of orderv, andD a subset ofG of cardinalityk.
D is called a(v,k,λ) difference setif, for every son-zero elementg∈G, the number
of pairsx,y∈D with yx−1 = g is equal toλ. The name arises because, if the group
is Abelian and written additively, the condition refers to pairsx,y with y− x =
g: the differences of distinct elements inD cover the non-zero elements ofG
uniformly.

If D is a (v,k,λ) difference set, then the subsets ofG of the formDa = {xa :
x∈D} are the blocks of a square 2-(v,k,λ) design on the point setG. This design
is obtained bydeveloping D. Conversely, any square design admitting an auto-
morphism group acting transitively can be constructed by developing a difference
set.

See Lander [6] for more on difference sets. Examples of difference set designs
include:

Paley designs: if q is a prime power congruent to 3 mod 4, then the non-zero
squares in GF(q) form a(q,(q−1)/2,(q−3)/4) difference set. The correspond-
ing design is thePaley design P(q).

Symplectic designs: if Q is a non-singular quadratic form in 2n variables
over GF(2), then the set{v : Q(v) = 1} is a (22n,22n−1± 2n−1,22n−2± 2n−1)
difference set in the additive group of the 2n-dimensional vector space. The sign
depends on the quadratic form chosen, but all quadratic forms for givenn produce
isomorphic or complementary designs. The design with block size 22n−1 + ε2n−1

is denoted bySε(2n).

Hadamard designs. A Hadamard matrixis ann×n matrix H with entries±1
satisfyingHH> = nI. If such a matrix exists withn> 2, thenn must be a multiple
of 4; it is conjectured that Hadamard matrices of all orders divisible by 4 exist.
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There are many constructions for such matrices. The simplest is recursive: ifH1

andH2 are Hadamard matrices, then so is theirKronecker product H1⊗H2. The

Kronecker product ofn copies of the Hadamard matrix

(
+1 +1
+1 −1

)
is said to be

of Sylvester type.
Given a Hadamard matrix of ordern = 4m, we can change signs of rows and

columns without affecting the Hadamard property. So we cannormalisethe ma-
trix so that all entries so that the first row and column consist of+1s. If we now
delete the first row and column, and replace−1 by 0 throughout the remaining
matrix, we obtain the incidence matrix of a square 2-(4m−1,2m−1,m−1) de-
sign, called aHadamard2-design. Any design with these parameters arises in this
way: we go back by replacing 0 by−1 and bordering with+1s.

If instead, we merely normalise the first row to consist of+1s and delete it,
and take blocksBε

i = { j : H ji = ε} for j = 2, . . . ,4m and ε = ±1, we obtain a
3-(4m,2m,m−1) design called aHadamard3-design. It is an extension of the
Hadamard 2-design just discussed (see later).

The designs PG(n,2) andP(q) are Hadamard 2-designs. They are isomorphic
for n = 2, q = 7, but not in any other case. The projective space comes from a
Hadamard matrix of Sylvester type.

4 Automorphisms

An automorphism of a square 2-design can be defined to be a permutation of the
point set which maps any block to a block. Thus, an automorphism induces a
permutation on the block set; there is no ambiguity, as the block permutation is
uniquely determined by the point permutation (since there are no repeated blocks).

There is a close relation between the point and block permutations:they have
the same cycle structure(the same number of cycles of each length).

To prove this, one shows first that the numbers of fixed points and blocks are
equal. The simplest proof involves counting triples(x,xg,b), wherex,xg ∈ b: this
is the same as the number of triples(x,b,bg−1), wherex ∈ b,bg−1. Now apply
this to powers ofg, observing that knowledge of the number of fixed points ofgn

for all n determines the cycle structure ofg.
The simplest case of this result is an automorphism with a single cycle on

points (and also on blocks). If we have such an automorphism, then we can index
the points by integers modv: fix a basepointx0 indexed by 0, and letx0gi be
indexed byi modv. Now if b is a block, then the set of indices of the points inb
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is a (v,k,λ) difference set in the cyclic group of orderv. Conversely, the design
obtained by developing a difference set modv admits a cyclic automorphism.

A consequence of the equality of fixed point and block numbers of an au-
tomorphism is that any group of automorphisms has equally many orbits on the
point and block sets; moreover, it is 2-transitive on points if and only if it is 2-
transitive on blocks. Using results about finite permutation groups, it is known
that (up to complementation) there are just two infinite families and two sporadic
examples of square 2-designs admitting 2-transitive groups:

• the point-hyperplane design of a projective space PG(n,q), wheren ≥ 2
andq is a prime power, withv = (qn+1−1)/(q−1), k = (qn−1)/(q−1),
λ = (qn−1−1)/(q−1);

• a symplectic designSε(2n), with v = 22n, k = 22n−1 + ε2n−1, λ = 22n−2 +
ε2n−1;

• The Paley designP(11), with v = 11,k = 5, λ = 2;

• A design withv = 176,k = 50, λ = 14, associated with the Higman–Sims
simple group.

The detailed theory of automorphisms is best developed in the case of pro-
jective planes (λ = 1). One of the reasons for this is the following. Letg be an
automorphism of prime orderp> λ. Then any two fixed points ofg are incident
with λ fixed blocks, and any two fixed blocks withλ fixed points. By Propo-
sition 1, for λ > 1 this implies that the fixed points and blocks form a square
2-(v′,k′,λ) design (possibly degenerate, that is, withv′ = k′ = λ). Forλ = 1, there
are other possibilities: all, or all but one, of the points lie on a single block.

Involutions(automorphisms of order 2) of a projective plane have the further
property that every non-fixed pointx lies on a fixed block (the unique block con-
taining x andxg), and dually. Thus the structure of the fixed points and lines is
restricted to one of the following:

• all the points on a lineb, and all the lines through a pointx;

• aBaer subplane, whose order is the square root of that of the whole plane.

In the first case, the involution is called anelationor ahomologyaccording asx is
onb or not. In the second, it is aBaer involution.
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5 Extensions

An extensionof a t-designD is a(t +1)-designE with a pointp such thatEx
∼= D.

(Here, if E has point setX and block setB, thederived design Ex has point set
X \{x} and block set{b\{x} : x∈ b∈B}. RegardingE as an incidence structure,
Ex denotes its restriction to the points different fromx and the blocks incident
with x.)

Which square 2-designs have extensions? Said otherwise, which 3-designsE
have the property thatEx is a square 2-design for some pointx? (If this holds for
some point, then it holds for all, since the parameters ofEx are independent of the
chosen pointx.)

Hughes [3] first investigated this question for projective planes and showed
that an extendable projective plane has order 2, 4 or 10. This is proved by a
simple counting argument to show that the number of blocks in this extension is
(n2 + n+ 2)(n2 + n+ 1)/(n+ 2), and observing that this quantity is an integer if
and only ifn+2 divides 12, leading to the stated values.

Suppose thatE is an extension of a projective planeD of ordern. Any block
of E hasn+ 2 points, and any two blocks meet in 0 or 2 points. So, ifEx = D,
then a block not containingx is a hyperoval inD. Now the unique plane of order 2
has 7 hyperovals, exactly the number required for an extension; and indeed it has
a unique extension (a 3-(8,4,1) design). The unique plane of order 4 has 168
hyperovals, three times the number required for an extension; and indeed it can
be extended three times (to a 5-(24,8,1) design). Proposition 3 shows the non-
existence of a plane of order 10; but by a relatively early stage in the computation
of Lam et al., it was known that such a plane can contain no hyperoval (and so
cannot be extendable).

In general we have the following result, which (apart from the non-existence
of an extension of a plane of order 10) is due to Cameron [1].

Proposition 4 Let E be a3-(v,k,λ) design which is an extension of a square2-
design. Then one of the following occurs:

(a) E is a Hadamard3-design (that is, v= 4(λ +1) and k= 2(λ +1);

(b) v= (λ +1)(λ2 +5λ +5), k = (λ +1)(λ +2);

(c) v= 496, k = 40, λ = 3.

In case (a), it is known that any Hadamard 2-design has a unique extension to a
Hadamard 3-design. The recipe is simple: ifD is a Hadamard 2-design with point
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setX and block setB, and∞ is a point not inX, then the extension has point set
X∪{∞} and block set{b∪∞,X \b : b∈ B}. Alternatively, go via the Hadamard
matrix as described earlier.

In case (b), forλ = 1, the square designD is the projective plane of order 4,
which (as noted above) is three times extendable. Forλ = 2, D is a 2-(56,11,2)
design. Five non-isomorphic designs with these parameters are known; none is
known to be extendable, and at least some are known not to be, but the question
is not resolved. For larger values ofλ, and in case (c), nothing is known.

6 Related designs

6.1 Affine designs

Fisher’s inequality asserts that in any 2-design (BIBD), the number of blocks is at
least as great as the number of points; equality holds if and only if any two blocks
intersect in a constant number of points (in which case the design is square).

A design isresolvableif its blocks can be partitioned intoparallel classeseach
of which partitions the points. Clearly a resolvable 2-design cannot be square, so
the number of blocks exceeds the number of points. Bose showed that, in fact, a
resolvable 2-design satisfies

b≥ v+ r−1,

whereb is the number of blocks,v the number of points, andr the number of
parallel classes (the number of blocks containing a point).

This bound is attained if and only if the intersection of any two non-parallel
blocks has constant cardinality. Such a design is calledaffine. Examples include
the point-hyperplane designs of affine spaces over finite fields.

6.2 Quasi-symmetric2-designs

As noted earlier, a 2-design is square if any two blocks intersect in a constant
number of points, that is, if its dual is a 2-design. A 2-design is said to bequasi-
symmetricif the cardinality of the intersection of two blocks takes just two distinct
values.

The main result about such designs is a doe to Goethals and Seidel: the dual
of a quasi-symmetric 2-design is partially balanced with respect to a 2-class as-
sociation scheme. In other words, if we define two relations on the blocks by the
cardinality of their intersections, we obtain a 2-class association scheme.
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For example, any affine design is quasi-symmetric; its dual is group-divisible
(the ‘groups’ being the parallel classes).

For much more about quasi-symmetric designs, see the book by Shrikhande
and Sane [7].

6.3 Linked square designs

Suppose we have more than two sets, sayX1, . . . ,Xm, with an incidence relation
between each pair(Xi ,Xj) forming a square 2-design. Both mathematical and sta-
tistical considerations suggest that we should impose a further condition ‘linking’
any three of the sets. However, various inequivalent forms of the linking condition
have been proposed. LetAi j denote the incidence matrix of the relation between
Xi andXj , where rows are indexed byXi and columns byXj . Three conditions
which have been proposed, in order of decreasing strength, are:

(a)Ai j A jk = xAik +yJ;

(b) Ai j A jkAki = xI +yJ;

(c) Ai j A jkAki +AikAk jA ji = xI +yJ.

HereJ denotes the all-1 matrix. The conditions are required to hold for all distinct
indicesi, j,k. The parametersx,y may depend on the indicesi, j,k, and are not the
same in the three conditions.

Condition (a) guarantees that the structure on the union of the sets is a coherent
configuration. It was first introduced to study 2-transitive permutation groups.
Examples (in which the square 2-designs are all symplectic) can be constructed
from quadratic forms over GF(2).

Condition (c) has been considered by Preece. It is the most natural from a
statistical point of view.

6.4 Youden “squares”

It follows from Hall’s marriage theorem that the edge set of any regular bipartite
graph can be partitioned into 1-factors. Applying this to the incidence graph of
a square 2-(v,k,λ) design gives a structure known as aYouden ‘square’. Each
entry 1 in the incidence matrix of the design is replaced by one of the symbols
1,2, . . . ,k, and the zeros by blanks, in such a way that each symbol occurs once in
each row and once in each column. (The symbols index the 1-factors).

The Encyclopaedia of Design Theory Square 2-designs/9



Another, more commonly used, representation, is as ak× v rectangle con-
taining the symbols 1, . . . ,v and forming a Latin rectangle, such that the symbols
contained in each column form a block of the design.

From the point of view of experimental design, we have a set of plots with
treatment and block partitions forming a square 2-design (that is, each balanced
with respect to the other), and one further partition orthogonal to both the treat-
ment and block partitions.

As noted, Hall’s theorem guarantees that any square design with constant
block size and constant replication number can be ‘Youdenised’. Sometimes, sys-
tems of linked designs can be ‘Youdenised’ as well: see Cameron [2].
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