Square 2-designs

Square 2-designs are variously known as symmetric designs, symmetric BIBDs,
and projective designs. The definition does not imply any symmetry of the design,
and the term ‘projective designs’, chosen by Dembowski by analogy with ‘affine
designs’, has not caught on. We call these designs square because their incidence
matrices are.

1 Definition

Suppose that k,A are positive integers witli > k > A > 0. A square2-(v,k,A)
designis a block design satisfying

(A) There arev points.

(A’) There arev blocks.

(B) Any block is incident withk points.

(B’) Any point is incident withk blocks.

(C) Any two blocks are incident with points.
(C") Any two points are incident with blocks.
(D) k(k—1) = (v—21)A.

Of course these conditions are not all independent. If (A), (B) andh@d,
then we have a 2-design (a BIBD), and the number of block&sis 1)\ /k(k—1).
So, if (D) also holds, then the number of blocks is also equaland so (A) holds
(and indeed, all the remaining conditions do).

In this context, note thdisher’s Inequalityshows that a 2-design has at least
as many blocks as points, and that equality implies that any two blocks meet in a
constant number of points. Also, if (C) and’{®oth hold, then the dual is also a
2-design, and so Fisher’s inequality and its dual imply that the numbers of points
and blocks are equal. So (A), (B),')Gnd any one of the other conditions imply
all the rest.

Another characterisation is as follows.
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Proposition 1 Suppose that an incidence structure D has more than one point
and more than one block. Suppose that any two points are incidenAwithcks,
and any two blocks with’ points. Ther\ = A, and one of the following occurs:

(a) D is a square2-design;
(b) A > 1, and D has\ points and\ blocks, any point and block being incident;

(c) A =1, and D has one block incident with every point, any other block being
incident with just one point, and dually;

(d) A =1, and D has one block incident with every point except one, any other
block being incident with just two points, and dually.

2 Properties

The adjacency matriof a square 2-design is tlvex v matrix with rows indexed
by blocks and columns by points, tiile, x) entry being 1 ifx is incident withb
and 0 otherwise. It satisfies

AJ=JA = Kk,
AAT =ATA = (k=M +AJ,

wherel andJ are the identity and all-1 matrices of size v.

It follows from these equations thatis invertible; its determinant igv(k —
A)-D/2,

A square 2-design with = 1 is called aprojective plane The integem =
k— 1 is itsorder. The parameters of a projective plane of ordeare given by
v=n?+n+1,k=n+1. The blocks of a projective plane are often calieds
two points lie on a unique line and two lines meet in a unique point.

Thedualof a square 2-design (obtained by interchanging the labels ‘point’ and
‘block’) is again a square 2-design with the same parameters. This holds because
the duals of (A)—(C) above are (A(C). Its incidence matrix is the transpose of
that of the original design.

Thecomplemenof a square 2-design is the design on the same point set whose
blocks are the complements of the blocks of the original design. In other words,
we interchange ‘incidence’ and ‘non-incidence’ between points and blocks. An
inclusion-exclusion argument shows that the complement of a squaré, 2,
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design is a square @ v —k,v—2k+A). If the original design has incidence
matrix A, then the incidence matrix of the complementlis A. (Actually this

is not quite true. The sets containing all but one point are the blocks of a square
2-(v,v—1,v—2) design. The complement is formally a2-1,0) design, but this
does not satisfy our requirement that- 0. These are the only exceptions.)

3 Existence and non-existence
The parameterf/, k,\) of a square 2-design satisfy equation (D) above:
(v—1DA =k(k—1).

Not every parameter triple with > k > A > 0 is realised by a square 2-design.
TheBruck—Ryser—-Chowla Theoragives a further necessary condition:

Proposition 2 Suppose that a squag(v,k,A) design exists.
(a) If vis even, then k A is a square.

(b) If v is odd, then the equation
Z = (-1)VU/203 4 (k= N)y?
has a solution in integer&x,y, z), not all zero.

See, for example, [4] for a proof.

A consequence of this theorem is that, if the ordef a projective plane is
congruentto 1 or 2 mod 4, thens the sum of two integer squares. So there is no
projective plane of order 6.

Equation (D) and the Bruck—Ryser—Chowla Theorem are not sufficient for the
existence of a design. However, only a single instance (up to complementation)
is known of a parameter set satisfying the BRC Theorem for which no design
exists. This is the result of a massive computation by ledral,, which showed
the following:

Proposition 3 There is no projective plane of ord&p.

There are many constructions of square 2-designs. What follows is by no
means a complete survey, but mentions some of the most important types.
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Projective spaces. The projective space R@,q) is constructed from afn+1)-
dimensional vector spa&éover the finite field GFq), whereq is a prime power.
The objects or varieties of the projective space are all the subspatesaudrt
from {0} andV; two subspaces are incident if one contains the othepoift

is a 1-dimensional subspace, antygperplaneis a subspace of codimension 1.
Now the points and hyperplanes form a squarg?-—1)/(q—1),(q"—1)/(q—
1),(q"1 —1)/(g—1) design. In particular, ifi = 2, this design is a projective
plane of orden.

Difference sets. LetG be a group of order, andD a subset o6 of cardinalityk.
Dis called av,k, A) difference seif, for every son-zero elemengte G, the number
of pairsx,y € D with yx~1 = gis equal ta\. The name arises because, if the group
is Abelian and written additively, the condition refers to padirg with y —x =
g: the differences of distinct elements ih cover the non-zero elements &f
uniformly.

If D is a(v,k,A) difference set, then the subsets®bf the formDa = {xa:
x € D} are the blocks of a square(2k,A) design on the point s&. This design
is obtained bydeveloping D Conversely, any square design admitting an auto-
morphism group acting transitively can be constructed by developing a difference
set.

See Lander [6] for more on difference sets. Examples of difference set designs
include:

Paley designs: if gis a prime power congruent to 3 mod 4, then the non-zero
squares in Gfy) form a(q,(g—1)/2,(q— 3)/4) difference set. The correspond-
ing design is théaley design Ry).

Symplectic designs: if Q is a non-singular quadratic form im2sariables
over GHR2), then the sefv: Q(v) = 1} is a (22,221—1 4 on—1 22n-2 4 on—1)
difference set in the additive group of the-8imensional vector space. The sign
depends on the quadratic form chosen, but all quadratic forms for gipesduce
isomorphic or complementary designs. The design with block $f¥et 2- g2"—1
is denoted byS*(2n).

Hadamard designs. A Hadamard matrixs ann x n matrix H with entries+1
satisfyingHH " = nl. If such a matrix exists with > 2, thenn must be a multiple
of 4; it is conjectured that Hadamard matrices of all orders divisible by 4 exist.
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There are many constructions for such matrices. The simplest is recursive: if
andH, are Hadamard matrices, then so is th&ionecker product H® Hp. The

+1 +1)\. )
41 _1> is said to be

Kronecker product oh copies of the Hadamard matr€<
of Sylvester type

Given a Hadamard matrix of order= 4m, we can change signs of rows and
columns without affecting the Hadamard property. So wergamalisethe ma-
trix so that all entries so that the first row and column consistb$. If we now
delete the first row and column, and replaeg by O throughout the remaining
matrix, we obtain the incidence matrix of a squarédgi— 1,2m— 1 m—1) de-
sign, called &Hadamard2-design Any design with these parameters arises in this
way: we go back by replacing 0 byl and bordering witht1s.

If instead, we merely normalise the first row to consisttdfs and delete it,
and take block®f = {j : Hji = ¢} for j =2,...,4mande = £1, we obtain a
3-(4m,2m,m— 1) design called aladamard3-design It is an extension of the
Hadamard 2-design just discussed (see later).

The designs P@, 2) andP(q) are Hadamard 2-designs. They are isomorphic
for n=2, g =7, but not in any other case. The projective space comes from a
Hadamard matrix of Sylvester type.

4  Automorphisms

An automorphism of a square 2-design can be defined to be a permutation of the
point set which maps any block to a block. Thus, an automorphism induces a
permutation on the block set; there is no ambiguity, as the block permutation is
uniquely determined by the point permutation (since there are no repeated blocks).
There is a close relation between the point and block permutatibeghave
the same cycle structuféhe same number of cycles of each length).
To prove this, one shows first that the numbers of fixed points and blocks are
equal. The simplest proof involves counting triplesxg, b), wherex, x® € b: this
is the same as the number of triplesb,bg1), wherex € b,bg~t. Now apply
this to powers ofy, observing that knowledge of the number of fixed pointgbf
for all n determines the cycle structuregf
The simplest case of this result is an automorphism with a single cycle on
points (and also on blocks). If we have such an automorphism, then we can index
the points by integers mod fix a basepointg indexed by 0, and lexog' be
indexed byi modv. Now if b is a block, then the set of indices of the pointsin
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is a(v,k,A) difference set in the cyclic group of order Conversely, the design
obtained by developing a difference set moadmits a cyclic automorphism.

A consequence of the equality of fixed point and block numbers of an au-
tomorphism is that any group of automorphisms has equally many orbits on the
point and block sets; moreover, it is 2-transitive on points if and only if it is 2-
transitive on blocks. Using results about finite permutation groups, it is known
that (up to complementation) there are just two infinite families and two sporadic
examples of square 2-designs admitting 2-transitive groups:

e the point-hyperplane design of a projective spacér¢, wheren > 2
andq is a prime power, wittv = (™1 —1)/(q—1), k= (q"—1)/(q—1),
A=(@"t-1)/(a-1);

e a symplectic desig(2n), with v=22" k=221 gon—1 \ —22n—2 1
g2n-1.

e The Paley desigR(11), withv=11,k=5A = 2;

e A design withv= 176,k = 50, A = 14, associated with the Higman—-Sims
simple group.

The detailed theory of automorphisms is best developed in the case of pro-
jective planesX = 1). One of the reasons for this is the following. lgebe an
automorphism of prime ordgy > A. Then any two fixed points af are incident
with A fixed blocks, and any two fixed blocks with fixed points. By Propo-
sition 1, forA > 1 this implies that the fixed points and blocks form a square
2-(V,K,\) design (possibly degenerate, that is, with- K = A). ForA = 1, there
are other possibilities: all, or all but one, of the points lie on a single block.

Involutions(automorphisms of order 2) of a projective plane have the further
property that every non-fixed poirtlies on a fixed block (the unique block con-
taining x andkg), and dually. Thus the structure of the fixed points and lines is
restricted to one of the following:

¢ all the points on a lind, and all the lines through a poirt
e aBaer subplanewhose order is the square root of that of the whole plane.

In the first case, the involution is called alationor ahomologyaccording ax is
onb or not. In the second, it isBaer involution

The Encyclopaedia of Design Theory Square 2-designs/6



5 Extensions

An extensiorof at-designD is a(t + 1)-designE with a pointp such thaEy = D.
(Here, If E has point seX and block seB, the derived design Ehas point set
X\ {x} and block se{b\ {x} : x € b € B}. Regardinge as an incidence structure,
Ex denotes its restriction to the points different fromand the blocks incident
with x.)

Which square 2-designs have extensions? Said otherwise, which 3-dEsigns
have the property thdy is a square 2-design for some pox@t (If this holds for
some point, then it holds for all, since the parameteis,aire independent of the
chosen poink.)

Hughes [3] first investigated this question for projective planes and showed
that an extendable projective plane has order 2, 4 or 10. This is proved by a
simple counting argument to show that the number of blocks in this extension is
(n>4+n+2)(n”+n+1)/(n+2), and observing that this quantity is an integer if
and only ifn+ 2 divides 12, leading to the stated values.

Suppose thaE is an extension of a projective plaieof ordern. Any block
of E hasn+ 2 points, and any two blocks meet in O or 2 points. Sdiit= D,
then a block not containingis a hyperoval irD. Now the unique plane of order 2
has 7 hyperovals, exactly the number required for an extension; and indeed it has
a unique extension (a @,4,1) design). The unique plane of order 4 has 168
hyperovals, three times the number required for an extension; and indeed it can
be extended three times (to a34,8,1) design). Proposition 3 shows the non-
existence of a plane of order 10; but by a relatively early stage in the computation
of Lam et al, it was known that such a plane can contain no hyperoval (and so
cannot be extendable).

In general we have the following result, which (apart from the non-existence
of an extension of a plane of order 10) is due to Cameron [1].

Proposition 4 Let E be a3-(v,k,A) design which is an extension of a square
design. Then one of the following occurs:

(a) E is a Hadamar®-design (that is, v= 4(A + 1) and k= 2(A + 1);
(b)v=A+1)(A2+51+5), k= A+1)(A+2);
(c)v=496 k=40,A=3.

In case (a), itis known that any Hadamard 2-design has a unique extension to a
Hadamard 3-design. The recipe is simpleDifs a Hadamard 2-design with point
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setX and block seB, and is a point not inX, then the extension has point set
XU{w} and block sefbUc, X\ b: b € B}. Alternatively, go via the Hadamard
matrix as described earlier.

In case (b), folA = 1, the square desidn is the projective plane of order 4,
which (as noted above) is three times extendable.AFer2, D is a 2{56,11,2)
design. Five non-isomorphic designs with these parameters are known; none is
known to be extendable, and at least some are known not to be, but the question
is not resolved. For larger valuesXfand in case (c), nothing is known.

6 Related designs

6.1 Affine designs

Fisher’s inequality asserts that in any 2-design (BIBD), the number of blocks is at
least as great as the number of points; equality holds if and only if any two blocks
intersect in a constant number of points (in which case the design is square).

A design isresolvabléf its blocks can be partitioned infzarallel classegach
of which partitions the points. Clearly a resolvable 2-design cannot be square, so
the number of blocks exceeds the number of points. Bose showed that, in fact, a
resolvable 2-design satisfies

b>v+r—1,

whereb is the number of blocksy the number of points, andthe number of
parallel classes (the number of blocks containing a point).

This bound is attained if and only if the intersection of any two non-parallel
blocks has constant cardinality. Such a design is calféde Examples include
the point-hyperplane designs of affine spaces over finite fields.

6.2 Quasi-symmetric2-designs

As noted earlier, a 2-design is square if any two blocks intersect in a constant
number of points, that is, if its dual is a 2-design. A 2-design is said uibsi-
symmetriaf the cardinality of the intersection of two blocks takes just two distinct
values.

The main result about such designs is a doe to Goethals and Seidel: the dual
of a quasi-symmetric 2-design is partially balanced with respect to a 2-class as-
sociation scheme. In other words, if we define two relations on the blocks by the
cardinality of their intersections, we obtain a 2-class association scheme.
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For example, any affine design is quasi-symmetric; its dual is group-divisible
(the ‘groups’ being the parallel classes).

For much more about quasi-symmetric designs, see the book by Shrikhande
and Sane [7].

6.3 Linked square designs

Suppose we have more than two sets, Xay.., Xy, with an incidence relation
between each paiiX;, Xj) forming a square 2-design. Both mathematical and sta-
tistical considerations suggest that we should impose a further condition ‘linking’
any three of the sets. However, various inequivalent forms of the linking condition
have been proposed. LA} denote the incidence matrix of the relation between
Xi and Xj, where rows are indexed by and columns byX;. Three conditions
which have been proposed, in order of decreasing strength, are:

(@) AijAjx = XAk +yJ;
(b) AijAjAi = X1 + Y3,
() AjAjkAxi + AikAxjAji = XI +yJ.

HereJ denotes the all-1 matrix. The conditions are required to hold for all distinct
indicesi, j,k. The parameters y may depend on the indiceg, k, and are not the
same in the three conditions.

Condition (a) guarantees that the structure on the union of the sets is a coherent
configuration. It was first introduced to study 2-transitive permutation groups.
Examples (in which the square 2-designs are all symplectic) can be constructed
from quadratic forms over GB).

Condition (c) has been considered by Preece. It is the most natural from a
statistical point of view.

6.4 Youden “squares”

It follows from Hall's marriage theorem that the edge set of any regular bipartite
graph can be patrtitioned into 1-factors. Applying this to the incidence graph of
a square 2v,k,A\) design gives a structure known asrauden ‘square’ Each
entry 1 in the incidence matrix of the design is replaced by one of the symbols
1,2,...,k, and the zeros by blanks, in such a way that each symbol occurs once in
each row and once in each column. (The symbols index the 1-factors).
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Another, more commonly used, representation, is &s<as rectangle con-
taining the symbols 1..,v and forming a Latin rectangle, such that the symbols
contained in each column form a block of the design.

From the point of view of experimental design, we have a set of plots with
treatment and block partitions forming a square 2-design (that is, each balanced
with respect to the other), and one further partition orthogonal to both the treat-
ment and block partitions.

As noted, Hall's theorem guarantees that any square design with constant
block size and constant replication number can be ‘Youdenised’. Sometimes, sys-
tems of linked designs can be ‘Youdenised’ as well: see Cameron [2].
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