
Permutation groups

Whatever you have to do with a structure-endowed entityΣ try to
determine its group of automorphisms . . . You can expect to gain a
deep insight into the constitution ofΣ in this way.

Hermann Weyl,Symmetry

1 Automorphism groups, permutation groups, ab-
stract groups

Let Σ be a mathematical object or structure of any kind whatever, based on a setΩ
of “points”. The objectΣ may be combinatorial (a graph, a design, etc.,), algebraic
(a group a field, a vector space, etc.), topological, or indeed anything at all.

An automorphismof Σ is an isomorphism fromΣ to itself; that is, a bijective
mapg from Ω to itself such thatg andg−1 preserve the structure ofΣ.

A bijection fromΩ to itself is apermutationof Ω. We write permutations on
the right, so thatαg is the image ofα under the permutationg.

The set of all automorphisms ofΣ is called theautomorphism groupof Σ,
denoted by Aut(Σ). It has the following easily checked properties (whereG is
written for Aut(Σ)):

(PG1) forg1,g2 ∈G, the compositiong1◦g2 (obtained by applying firstg1, then
g2) is in G;

(PG2) the identity map (which fixes every point) belongs toG;

(PG3) ifg∈G, then the inverse functiong−1 belongs toG.

An arbitrary setG of permutations ofΩ satisfying (PG1)–(PG3) is called a
permutation grouponΩ. Thus, the automorphism group of any object is a permu-
tation group. Conversely, given any permutation group, it is possible to concoct
an object of which it is the automorphism group; but there may be no “natural”
object (e.g. graph) with this property.

According to (PG1), ifG is a permutation group, then composition is a binary
operation onG. This operation has the properties
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(AG1) Theassociative lawholds:

(g1◦g2)◦g3 = g1◦ (g2◦g3)

for all g1,g2,g3 ∈G.

(AG2) There is an element 1∈G such thatg◦1 = 1◦g = g for all g∈G.

(AG3) For anyg∈G, there is an elementg−1∈G such thatg◦g−1 = g−1◦g= 1,
where 1 is the element in (AG2).

The elements in (AG2) and (AG3) are those guaranteed by (PG2) and (PG3),
while composition of maps is always associative.

An arbitrary setG with a binary operation◦ satisfying (AG1)–(AG3) is called
an(abstract) group. Thus, every permutation group is an abstract group.

Two groupsG andG′ are isomorphicif there is a bijectionφ : G1→ G2 sat-
isfying (g1 ◦g2)φ = (g1φ) ◦ (g2φ). The mapφ is an isomorphismfrom G to H.
Isomorphic groups are indistinguishable with regard to their algebraic properties.
Cayley’s Theoremasserts that the converse of our earlier remark holds: every ab-
stract group is isomorphic to a permutation group.

Thus our three types of group are in a sense all the same.
We normally suppress the group operation from the notation and writeg1g2

instead ofg1◦g2. The associative law allows us to writeg1g2g3 unambiguously.

2 Group actions

A subgroupof a groupG is a subsetH of G such thatH equipped with the restric-
tion of the operation ofG is itself a group.

Thesymmetric groupSym(Ω) on a setΩ is the set of all permutations ofΩ.
Obviously it is a group (with the operation of composition), and a permutation
group onΩ) is precisely a subgroup of Sym(Ω).

A homomorphismfrom a groupG to a groupH is a functionφ : G→ H
satisfying(g1g2)φ = (g1φ)(g2φ) for all g1,g2 ∈ G. Thus an isomorphism is a
bijective homomorphism. The image of a homomorphismφ is a subgroup ofH,
while itskernel, the set{g∈G : gφ = 1H} is a normal subgroup ofG.

An actionof a groupG on the setΩ is a homomorphism fromG to Sym(Ω).
We usually suppress the name of the homomorphism and writeαg for the image
of α under the permutationgφ , whereφ is the action.
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The image of an action is a permutation group. The concept of an action
is more flexible than that of permutation groups for two reasons: a given group
may have many actions; and the actions may not be faithful (may have non-trivial
kernel). For example, the automorphism group of a design acts on the points,
point pairs, blocks, flags, etc., of the design.

However, most of the concepts we discuss below apply as well to group actions
as to permutation groups.

3 Orbits, transitivity, stabiliser

Suppose thatG acts onΩ. Define a relation∼ on Ω by the rule thatα ∼ β

if αg = β for someg ∈ G. Then∼ is an equivalence relation: the reflexive,
symmetric and transitive laws follow immediately from (PG2), (PG3) and (PG1)
respectively. ThusΩ decomposes as a disjoint union of equivalence classes. These
classes are calledorbits, and we say thatG actstransitivelyon Ω if there is only
one orbit.

Thestabiliser Gα of the pointα is defined to be the subset

Gα = {g∈G : αg = α}

of G. It is straightforward to show that it is a subgroup ofG, and that for anyβ ,
the set

{g∈G : αg = β}
is either empty (ifα andβ lie in different orbits) or a right coset ofGα . Thus, the
orbit containingα is in one-to-one correspondence with the set of right cosets of
Gα . Moreover, this correspondence respects the action ofG (by right multiplica-
tion on the set of right cosets). So the action can be described “internally”, within
G.

A consequence of this is a version ofLagrange’s Theorem: the number|G|/|Gα |
of cosets ofGα is equal to the size of the orbit containingα.

4 Multiple transitivity

Let G act onΩ, and lett be a positive integer not greater thanΩ. We say that
G is t-transitiveif, given any twot-tuples(α1, . . . ,αt) and(β1, . . . ,βt) of distinct
elements ofΩ, there is an elementg of G carrying the first to the second (that is,
αig = βi for i = 1, . . . , t).
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A t-transitive group automatically gives us varioust-designs: takeΩ to be the
point set, and as blocks the images underG of some base block, an arbitraryk-set
B.

It is easy to see that at-transitive group is(t−1)-transitive; so any transitive
group has a degree of transitivity, the maximumt for which it is t-transitive. The
symmetric group of degreen is n-transitive, and the alternating group is(n−2)-
transitive but not(n−1)-transitive. It is known that the largest degree of transitiv-
ity of a finite permutation group other than a symmetric or alternating group is 5;
but the proof of this requires the Classification of Finite Simple Groups (CFSG),
and so is far from elementary. Moreover, using CFSG, all the 2-transitive groups
have been determined. In particular, the only 5-transitive groups apart from sym-
metric and alternating groups are theMathieu groups M12 andM24. These are the
automorphism groups of 5-(12,6,1) and 5-(24,8,1) designs respectively.

5 Primitivity

Let G act transitively onΩ. A G-congruenceon Ω is a partition ofΩ which is
preserved by all elements ofG. There are always two trivial congruences: the
partition into singletons, and the partition with a single part. The action is called
primitive if these are the onlyG-congruences.

A transitive action ofG is primitive if and only if the stabiliserGα is a maximal
proper subgroup ofG. It is easy to see that any 2-transitive action is primitive. A
non-trivial normal subgroup of a primitive group is transitive.

Indeed, more can be said about normal subgroups of primitive groups. Such
a group has at most two minimal normal subgroups; if there are two, they are
isomorphic. Furthermore, theO’Nan–Scott Theoremclassifies primitive groups
into several types according to the action of thesocle(the product of the minimal
normal subgroups). This result allows CFSG to be applied to many problems
about primitive groups, although we are far from a complete classification of them
similar to that of the 2-transitive groups. This is discussed further in another topic
essay in this series.
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6 Permutation character and orbit-counting

Thepermutation characterπ associated with a permutation groupG or an action
of G is the function defined by

π(g) = |{α ∈Ω : αg = α}|

giving the number of fixed points of the elements ofG.
It is a character ofG (that is, the trace of a matrix representations), and so

can be decomposed as a linear combination of irreducible characters with non-
negative integer coefficients. One irreducible which always occurs is theprincipal
character, the function taking the value 1 on all elements.

The Orbit-counting Lemma(mis-titled Burnside’s Lemma) asserts that the
number of orbits ofG is equal to the average number of fixed points of its ele-
ments:

# G-orbits=
1
|G| ∑g∈G

π(g).

This is the basis of the theory of enumeration under group action, as we shall see.
It has other implications too. For example, it implies that the number of orbits of
G is equal to the multiplicity of the principal character inπ. Also,G is 2-transitive
if and only if π is the sum of just two irreducible characters (one of which is the
principal character).

7 Cycle index

More advanced applications of the Orbit-Counting Lemma depend on thecycle
index, the normalised generating function for the cycle structure of elements ofG.
More precisely, if|Ω| = n, the cycle indexZ(G) is the polynomial in indetermi-
natess1, . . . ,sn given by

Z(G) =
1
|G| ∑g∈G

sc1(g)
1
· · ·scn(g)

n ,

whereck(g) is the number of cycles of lengthk in the decomposition ofg into
disjoint cycles.

This polynomial solves many problems involving counting configurations on
Ω up to the action ofG. We give a general result known as theCycle Index
Theorem.
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Suppose thatF is a set of “figures”, each with a non-negative integer weight.
We allow infinitely many figures but require that the numberan of figures of
weightn is finite for alln. Thefigure-counting seriesis the generating function

A(x) = ∑
n≥0

anxn.

A configuration, obtained by placing a figure at each point ofΩ, can be described
as a function fromΩ to F . Any such functionφ has a weight, the sum of the
weights ofφ(α) for α ∈ Ω. The weight is invariant under the action ofG on the
set of functions given by

(φg)(α) = φ(αg−1).

Let bn be the number ofG-orbits on functions of weightn, and define thefunction-
counting seriesto be the generating function

B(x) = ∑
n≥0

bnxn.

Now an application of the Orbit-counting Lemma gives the Cycle Index Theorem,
which asserts that

B(x) = Z(G;si ← A(xi)),

whereF(si ← ti) denotes the result of substitutingti for si in F for i = 1, . . . ,n.
For a simple example, if we want to count orbits on colourings ofΩ with k

colours, we take each colour to be a figure of weight zero, that is,A(x) = k. If we
are interested in the number of times that a distinguished colour occurs, let this
colour have weight 1, and takeA(x) = x+k−1.

In particular, the choiceA(x) = x+ 1 enumerates orbits on subsets ofΩ by
cardinality of the subset. Thus, for example, we can count thet-designs admitting
a givent-transitive group of automorphisms, and in particular those for which
the group acts block-transitively. However, calculating the sizes of the orbits (and
hence the parameters of the designs) requires further analysis, as we now describe.

8 Möbius function

Let P be a partially ordered set. Thezeta-functionof P is the function fromP×P
toZ given by

ζ (x,y) =
{

1 if x≤ y,
0 otherwise

.
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We can regard this as a matrix of size|P|; for a suitable ordering ofP (extending
the partial order), it is upper-triangular with diagonal entries 1, and so is invertible.
Its inverse is theMöbius functionof P; it is also an integral upper triangular matrix
with diagonal entries 1.

See the topic essay on partially ordered sets for more detail, and especially for
a discussion of M̈obius inversion.

Now suppose thatG is a permutation group onΩ. We suppose that we know
the Möbius function of the partially ordered setL(G) of subgroups ofG, and have
some information about how these subgroups act.

If we know the orbit lengths of a subgroupH, then we can compute the number
ak(H) of k-sets fixed byH for all k. The generating function is

∑
k≥0

akx
k = ∏

i∈I
(1+xmi ),

whereI indexes the orbits ofH, andmi is the size of theith orbit.
Now the numberbk of k-sets whose stabiliser is preciselyH is given by M̈obius

inversion: we have
ak(H) = ∑

H≤K≤G

bk(K),

since a set is fixed byH if and only if its stabiliserK satisfiesH ≤ K ≤G; and so

bk(H) = ∑
H≤K≤G

µ(H,K)ak(K).

Now a setB with stabiliserH lies in an orbit of size|G|/|H| by Lagrange’s Theo-
rem. If G is t-transitive, then the sets in this orbit form a block-transitivet-design
on Ω whose parameters can now be calculated.

By taking unions of orbits we obtain all theG-invariantt-designs.
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