Permutation groups

Whatever you have to do with a structure-endowed eixtify to
determine its group of automorphisms ... You can expect to gain a
deep insight into the constitution &fin this way.

Hermann WeylSymmetry

1 Automorphism groups, permutation groups, ab-
stract groups

LetZ be a mathematical object or structure of any kind whatever, based oQa set
of “points”. The objeck may be combinatorial (a graph, a design, etc.,), algebraic
(a group afield, a vector space, etc.), topological, or indeed anything at all.

An automorphisnof Z is an isomorphism fromx to itself; that is, a bijective
mapg from Q to itself such thayy andg~! preserve the structure af

A bijection from Q to itself is apermutationof Q. We write permutations on
the right, so thatxg is the image otx under the permutatiog.

The set of all automorphisms @&f is called theautomorphism groupf Z,
denoted by Auz). It has the following easily checked properties (whérés
written for Aut(X)):

(PG1) fqrgl, g, € G, the compositiom, o g, (obtained by applying firsg,, then
g,) isinG;

(PG2) the identity map (which fixes every point) belong&to
(PG3) ifg € G, then the inverse functiogr ! belongs tdG.

An arbitrary setG of permutations of2 satisfying (PG1)—(PG3) is called a
permutation groupn Q. Thus, the automorphism group of any object is a permu-
tation group. Conversely, given any permutation group, it is possible to concoct
an object of which it is the automorphism group; but there may be no “natural”
object (e.g. graph) with this property.

According to (PG1), ifG is a permutation group, then composition is a binary
operation orG. This operation has the properties
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(AG1) Theassociative lawholds:

(91095) 093 =0;°(9,°09;)
forall 9;,9,,9; € G.
(AG2) There is an elementd G such thagol=1ocg=gforallge G.

(AG3) For anyg € G, there is an element ! € Gsuchthagog ' =g tog=1,
where 1 is the element in (AG2).

The elements in (AG2) and (AG3) are those guaranteed by (PG2) and (PG3),
while composition of maps is always associative.

An arbitrary setG with a binary operatior satisfying (AG1)—(AG3) is called
an(abstract) group Thus, every permutation group is an abstract group.

Two groupsG andG' areisomorphicif there is a bijectionp : G, — G, sat-
isfying (9, 009,)¢ = (9,0) o (g,¢). The map¢ is anisomorphisnfrom G to H.
Isomorphic groups are indistinguishable with regard to their algebraic properties.
Cayley’s Theorenasserts that the converse of our earlier remark holds: every ab-
stract group is isomorphic to a permutation group.

Thus our three types of group are in a sense all the same.

We normally suppress the group operation from the notation and wjute
instead ofg, o g,. The associative law allows us to wrigeg,g; unambiguously.

2 Group actions

A subgroupof a groupG is a subseH of G such thaH equipped with the restric-
tion of the operation o6 is itself a group.

The symmetric grouBym(Q) on a sefQ is the set of all permutations @1.
Obviously it is a group (with the operation of composition), and a permutation
group onQ) is precisely a subgroup of Syf).

A homomorphisnfrom a groupG to a groupH is a function¢ : G — H
satisfying (9,9,)¢ = (9,¢)(9,¢) for all g;,9, € G. Thus an isomorphism is a
bijective homomorphism. The image of a homomorphisms a subgroup oH,
while itskerne| the sef{g € G: g¢ = 1} is a normal subgroup @.

An actionof a groupG on the seQQ is a homomorphism fron® to Sym(Q).
We usually suppress the name of the homomorphism and wgter the image
of o under the permutatiogg, where¢ is the action.
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The image of an action is a permutation group. The concept of an action
is more flexible than that of permutation groups for two reasons: a given group
may have many actions; and the actions may not be faithful (may have non-trivial
kernel). For example, the automorphism group of a design acts on the points,
point pairs, blocks, flags, etc., of the design.

However, most of the concepts we discuss below apply as well to group actions
as to permutation groups.

3 Orbits, transitivity, stabiliser

Suppose thaG acts onQ. Define a relation~ on Q by the rule thato ~ 8
if ag= P for someg € G. Then~ is an equivalence relation: the reflexive,
symmetric and transitive laws follow immediately from (PG2), (PG3) and (PG1)
respectively. Thu® decomposes as a disjoint union of equivalence classes. These
classes are callearbits, and we say tha® actstransitivelyon Q if there is only
one orbit.

Thestabiliser G, of the pointa is defined to be the subset

Gy ={geG:ag=a}

of G. It is straightforward to show that it is a subgroupGfand that for anyg,
the set
{9eG:ag=p}

is either empty (ifc andp lie in different orbits) or a right coset @,,. Thus, the
orbit containinga is in one-to-one correspondence with the set of right cosets of
G- Moreover, this correspondence respects the acti@ (bfy right multiplica-
tion on the set of right cosets). So the action can be described “internally”, within
G.

A consequence of this is a versionlafgrange’s Theoremnthe numbefG| /|G|
of cosets oG, is equal to the size of the orbit containing

4 Multiple transitivity

Let G act onQ, and lett be a positive integer not greater th@n We say that
G is t-transitiveif, given any twot-tuples(a,, ..., o) and(f,,..., ) of distinct
elements of, there is an elemem of G carrying the first to the second (that is,
o= pfori=1,...,1).
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A t-transitive group automatically gives us varidedesigns: take€) to be the
point set, and as blocks the images un@ef some base block, an arbitraset
B.

It is easy to see thattatransitive group igt — 1)-transitive; so any transitive
group has a degree of transitivity, the maximufor which it ist-transitive. The
symmetric group of degreeis n-transitive, and the alternating group(is— 2)-
transitive but notn— 1)-transitive. It is known that the largest degree of transitiv-
ity of a finite permutation group other than a symmetric or alternating group is 5;
but the proof of this requires the Classification of Finite Simple Groups (CFSG),
and so is far from elementary. Moreover, using CFSG, all the 2-transitive groups
have been determined. In particular, the only 5-transitive groups apart from sym-
metric and alternating groups are tiathieu groups M, andM,,,. These are the
automorphism groups of 8t2 6,1) and 5{24,8, 1) designs respectively.

5 Primitivity

Let G act transitively omQ. A G-congruenceon Q is a partition ofQ which is
preserved by all elements @. There are always two trivial congruences: the
partition into singletons, and the partition with a single part. The action is called
primitive if these are the onlg-congruences.

A transitive action of5 is primitive if and only if the stabiliseG,, is a maximal
proper subgroup db. It is easy to see that any 2-transitive action is primitive. A
non-trivial normal subgroup of a primitive group is transitive.

Indeed, more can be said about normal subgroups of primitive groups. Such
a group has at most two minimal normal subgroups; if there are two, they are
isomorphic. Furthermore, th®@’Nan—Scott Theorerolassifies primitive groups
into several types according to the action of seele(the product of the minimal
normal subgroups). This result allows CFSG to be applied to many problems
about primitive groups, although we are far from a complete classification of them
similar to that of the 2-transitive groups. This is discussed further in another topic
essay in this series.
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6 Permutation character and orbit-counting

Thepermutation characterr associated with a permutation groGpor an action
of G is the function defined by

n(g) =|{acQ:ag=a}

giving the number of fixed points of the elementLof

It is a character ofs (that is, the trace of a matrix representations), and so
can be decomposed as a linear combination of irreducible characters with non-
negative integer coefficients. One irreducible which always occurs wihepal
character the function taking the value 1 on all elements.

The Orbit-counting Lemmamis-titled Burnside’s Lemma) asserts that the
number of orbits ofG is equal to the average number of fixed points of its ele-
ments:

1
# G-orbits= — Y 7w(Q).
PN

This is the basis of the theory of enumeration under group action, as we shall see.
It has other implications too. For example, it implies that the number of orbits of
Gis equal to the multiplicity of the principal characterinAlso, G is 2-transitive

if and only if & is the sum of just two irreducible characters (one of which is the
principal character).

7 Cycle index

More advanced applications of the Orbit-Counting Lemma depend ooyttie
index the normalised generating function for the cycle structure of eleme@s of
More precisely, if| Q| = n, the cycle indexZ(G) is the polynomial in indetermi-
natess,,..., S, given by

I R N (¢ B,
200) = 1) 3 S5

wherec,(g) is the number of cycles of lengthin the decomposition of into
disjoint cycles.

This polynomial solves many problems involving counting configurations on
Q up to the action ofG. We give a general result known as t@gcle Index
Theorem
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Suppose thakt is a set of “figures”, each with a non-negative integer weight.
We allow infinitely many figures but require that the numlgrof figures of
weightn is finite for alln. Thefigure-counting series the generating function

A(X) = Zoanx”.

A configuration, obtained by placing a figure at each poirf2p€an be described
as a function fromQ to F. Any such functiong has a weight, the sum of the
weights of¢ (a) for a € Q. The weight is invariant under the action@fon the
set of functions given by

(09)() = p(ag ™).

Let b, be the number oB-orbits on functions of weight, and define th&unction-
counting serieso be the generating function

B(x) = n;)bnx”.

Now an application of the Orbit-counting Lemma gives the Cycle Index Theorem,
which asserts that .
B(X) = Z(Gi5 — A(x)),

whereF (s < t;) denotes the result of substitutigdor s in F fori =1,...,n.

For a simple example, if we want to count orbits on colouring§akith k
colours, we take each colour to be a figure of weight zero, tha(ig,= k. If we
are interested in the number of times that a distinguished colour occurs, let this
colour have weight 1, and tal&x) = x+k— 1.

In particular, the choicé\(x) = x+ 1 enumerates orbits on subsets(by
cardinality of the subset. Thus, for example, we can count-tesigns admitting
a givent-transitive group of automorphisms, and in particular those for which
the group acts block-transitively. However, calculating the sizes of the orbits (and
hence the parameters of the designs) requires further analysis, as we now describe.

8 Maoabius function
Let P be a partially ordered set. Tlzeta-functiorof P is the function fromP x P

to Z given by
_ 1 ifx<y,
c(xy) = {0 otherwise
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We can regard this as a matrix of sii&; for a suitable ordering d? (extending

the partial order), it is upper-triangular with diagonal entries 1, and so is invertible.
Its inverse is th&10bius functiorof P; it is also an integral upper triangular matrix
with diagonal entries 1.

See the topic essay on partially ordered sets for more detail, and especially for
a discussion of NMbius inversion.

Now suppose thab is a permutation group o2. We suppose that we know
the Mobius function of the partially ordered d€(G) of subgroups o6, and have
some information about how these subgroups act.

If we know the orbit lengths of a subgrotfy then we can compute the number
a,(H) of k-sets fixed byH for all k. The generating function is

S axt = r’(l+x’“),
k>0 e
wherel indexes the orbits dfi, andm is the size of théth orbit.

Now the numbeb, of k-sets whose stabiliser is preciselyis given by Mdbius
inversion: we have

g (H) = b (K),

H<K<G
since a set is fixed bl if and only if its stabiliseK satisfiedH < K < G; and so

b (H) = u(H,K)a (K).
H<K<G

Now a setB with stabiliserH lies in an orbit of sizeéG|/|H| by Lagrange’s Theo-
rem. If G is t-transitive, then the sets in this orbit form a block-transithgesign
on Q whose parameters can now be calculated.

By taking unions of orbits we obtain all tl&-invariantt-designs.
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