
Projective and affine planes

1 Projective planes

Consider incidence structures (whose elements are called points and lines) having
the following properties:

(P1) Any two points are incident with a unique line.

(P2) Any two lines are incident with a unique point.

This class of structures contains some degenerate ones (containing a line incident
with no, one or all points, or dually) which we do not want to consider. Slightly
less degenerate is the following type: one linel is incident with all the points
except one; each remaining line is incident with the point not onl and one other.
(This includes a triangle, where any line can play the role ofl ). An axiom which
excludes all of these is

(P3) There exist four points, no three incident with a common line.

A structure satisfying (P1), (P2) and (P3) is called aprojective plane.
It is not hard to show that, for any finite projective plane, there is an integer

q> 1 with the properties

(a) any line is incident withq+1 points;

(b) any point is incident withq+1 lines;

(c) there areq2 +q+1 points, and the same number of lines.

The integerq is called theorder of the projective plane.
A projective plane of orderq is a square 2-(q2 + q+ 1,q+ 1,1) design (a

symmetric BIBD).
The smallest projective plane has order 2 (see Figure 1). It is known as the

Fano plane. It is also, of course, the unique Steiner triple system of order 7.
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Figure 1: The Fano plane

2 Affine planes

Let l be a line of a projective planeΠ of order q, and letΠl be the incidence
structure obtained by deletingl and all of its points fromΠ. Since each other line
meetsΠ in a unique point, what remains is a 2-through a given pointp of l are
mutually disjoint inΠl ; there areq of them, so they cover all the points without
overlapping.

Conversely, letA be a 2-(q2,q,1) design. Choose a linel ′ and a pointp′ not
on l ′. Of theq+ 1 lines throughp′, q of them meetl ′, so just one is disjoint from
l ′. ThusEuclid’s parallel postulateholds: theq(q+1) lines fall intoq+1 parallel
classes, each containingq lines.

Now enlargeA by adjoining a set ofq+1 points, in one-to-one correspondence
with the parallel classes, and one new linel∞. Each new point is incident with all
the lines of the corresponding parallel class, andl∞ is incident with all the new
points. It is readily seen that the resulting structure is a projective plane of orderq.

A 2-(q2,q,1) design is called anaffine planeof order q. We’ve seen that
any projective plane with a distinguished line gives rise to an affine plane, and
conversely. The construction of the projective plane is describes asadding a line
at infinity to the affine plane.

In particular, there exists a projective plane of orderq if and only if there exists
an affine plane of orderq.

An affine plane is a special kind of net. Anet of orderq and degreer is an
incidence structure withq2 points, q points on each line,r lines through each
point, with two points on at most one line, satisfying Euclid’s parallel postulate.
Thus an affine plane of orderq is a net of orderq and degreeq+1.

A net of orderq and degreer exists if and only ifr −2 mutually orthogonal
Latin squares of orderq exists. Thus, the existence of a projective (or affine) plane
of orderq is equivalent to that of acomplete setof q−1 MOLS of orderq.
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3 Existence of projective planes

The definition of a projective plane is purely combinatorial, but all known con-
structions of finite projective planes are based on algebra.

The simplest, and most important, constructs a projective plane of prime power
orderq from the finite field GF(q).

Let V be a 3-dimensional vector space over GF(q). Let P be the set of 1-
dimensional subspaces ofV, andL the set of 2-dimensional subspaces; define an
incidence relation betweenP andL by the rule thatp is incident withl if p⊆ l .

Since two 1-dimensional subspaces span a 2-dimensional subspace, and two
2-dimensional subspaces intersect in a 1-dimensional subspace, conditions (P1)
and (P2) hold; moreover the four points (1-dimensional subspaces) spanned by
(1,0,0), (0,1,0), (0,0,1), and(1,1,1) satisfy (P3). So the structure is a projective
plane, and its order is easily seen to beq. This plane is denoted by PG(2,q), and
is calleddesarguesian, for reasons we will see shortly. (This is a special case of
the construction of projective spaces of arbitrary dimension.)

Although, in general, different affine planes can be obtained from the same
projective plane by deleting different lines, all the affine planes derived from the
desarguesian projective plane are isomorphic. This plane is known as thedesar-
guesian affine planeof orderq, denoted AG(2,q). The net corresponding to the
family of q−1 MOLS of orderq constructed by the “finite field method” is the
affine plane AG(2,q).

For prime orders, no other projective planes are known. For any composite
prime power except 4 and 8, other projective planes are known. It has been shown
that for each of the orders 2, 3, 4, 5, 7 and 8, it is known that only the desarguesian
planes exist. It is also known that up to isomorphism there are just four projective
planes of order 9.

For non-prime-powers, as we noted, no projective planes are known. However,
only two non-existence results have been found, one general (the Bruck–Ryser
theorem) and one specific (the result of a heroic computation by Lamet al.):

• If n≡ 1 or 2 (mod 4), andn is not the sum of two squares of integers, then
there is no projective plane of ordern.

• There is no projective plane of order 10.

The Bruck–Ryser theorem shows that there are no projective planes of orders 6,
14, 21, 22, . . .
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4 Characterisations

The planes PG(2,q) can be recognised among finite projective planes by either
Desargues’ or Pappus’ Theorem. These theorems assert that if the plane contains
all the points and all but one of the lines in the appropriate figure (Figure 2 or 3
respectively), then it contains the remaining line as well. The assertion is that
a finite projective plane is isomorphic to PG(2,q) if and only if it satisfies this
incidence theorem.
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Figure 2: Desargues’ Theorem

There are many other characterisations of these planes, involving either the
existence of certain automorphisms, or algebraic properties of the coordinates.
In particular, theOstrom–Wagner theoremasserts that a finite projective plane is
isomorphic to PG(2,q) for someq if and only if it has a doubly transitive auto-
morphism group.

5 Configurations in projective planes

We now discuss briefly a few special types of configurations. The discussion is
restricted to the planes PG(2,q); much less is known in other cases.
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Figure 3: Pappus’ Theorem

5.1 Ovals and hyperovals

An oval in a projective plane of orderq is a set of points which meets every line in
at most two points, and has a uniquetangent(a line meeting it in one point only)
at each of its points. The number of points in an oval isq+1. (For, if P is a point
of the oval, then theq non-tangent lines throughP each contain one further point
of the oval.)

In PG(2,q), aconic is the set of zeros of a non-singular quadratic form. Any
conic is an oval. Ifq is odd, the converse statement (that any oval is a conic) is
a celebrated theorem of Segre. Forq even,q> 4, there are ovals which are not
conics.

If q is even, theq+ 1 tangents to an oval have the remarkable property that
they are all concurrent at a single point, thenucleusof the oval. An oval together
with its nucleus is a set ofq+2 points with the property that every line meets it in
0 or 2 points. Such a set is called ahyperoval.

5.2 Maximal arcs

A maximal arc in a projective plane of orderq is a generalisation of a hyperoval:
it is a set of points meeting every line in either 0 ork points, for some fixedk. If
we exclude the degenerate casek = q+ 1 (when the set is the entire plane), it can
be shown thatk must divideq. Such a set is then called amaximal k-arc.

In PG(2,q), with q a power of 2, Denniston showed that there exist maximal
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k-arcs for all divisorsk of q. However, forq odd, Ball, Blokhuis and Mazzocca
showed that there is no maximalk-arc in PG(2,q) for 1< k< q.

5.3 Blocking sets

In a projective plane, any two lines meet, and so if a setSof points contains a line,
then it necessarily meets all the lines of the plane. Ablocking setis a setSwhich
meets all the lines but does not contain any line. The Fano plane has no blocking
set, but any larger plane contains blocking sets.

A blocking set in a plane of orderq must contain at leastq+
√

q+ 1 points.
If this bound is attained, then the blocking set must consist of the points of a
subplane of order

√
q. In particular, if q is a square, then PG(2,q) contains a

blocking set PG(2,
√

q) meeting this bound. Better lower bounds are known for
the size of a blocking set in PG(2,q) if q is not a square.

The complement of a blocking set is a blocking set, so we deduce that a block-
ing set contains at mostq2−√q points. If we require that the blocking set ismin-
imal (this means that, if a point is removed, the result is no longer a blocking set),
then its size is at mostq

√
q+ 1. This bound is also met in the plane PG(2,q) if q

is a square; a set meeting the bound is aunital.
We see that the range of sizes even of minimal of blocking sets is very wide;

there is no prospect of a classification of them.
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