
Resolutions of the pair design, or 1-factorisations of
complete graphs

1 Introduction
A resolution of a block design is a partition of the blocks of the design into parallel
classes, each of which forms a partition of the points of the design. Usually,
studying the resolutions of a design is interlocked with studying the design itself.
One case in which this is not so is when the structure of the design is trivial. The
most obvious case is where the design is the pair design, the 2-(n,2,1) design
whose blocks are all the 2-element subsets of the point set. A necessary condition
for resolvability is that n is even, since we require partitions of the point set into
sets of size 2. We will see that this condition is sufficient and discuss constructions
of resolutions, their asymptotic enumeration, resolutions with a high degree of
symmetry, and connections with other kinds of structures (notably Latin squares).

Another language is often used here. In a graph G, a 1-factor is a set of edges
which partitions the vertex set. A 1-factorisation is a partition of the edge set into
1-factors. So the objects we are considering are precisely 1-factorisations of the
complete graph Kn.

The simplest construction to show that they exist for all even n is geometrical.
Let n = 2k. Draw a regular (2k−1)-gon in the plane, and mark its centre. Now for
each edge e of the polygon, consider the following pairs: e and all the diagonals
parallel to e; the pair consisting of the vertex opposite e and the centre of the
polygon. Each pair occurs precisely once, since given any diagonal, there is a
unique edge parallel to it, and given any vertex, there is a unique edge opposite to
it.

2 Further constructions
The construction just described can be cast into a more algebraic form. Number
the vertices of the polygon by elements 0,1,2, . . . ,2k−2 of the integers mod 2k−1
in order, and label the centre as ∗. Now it is easily checked that, for each element
a of Z/(2k− 1)Z, there is a 1-factor consisting of all pairs {x,y} with x + y =
2a,x 6= y together with the pair {a,∞}.

This construction generalises: we can replace Z/(2k− 1)Z by any abelian
group of odd order n−1, since in such a group the equation 2x = a has a unique
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solution for any element a.
A second construction from abelian groups uses the elementary abelian group

of order n = 2d , the direct sum of d copies of Z/2Z. This time the 1-factors
are indexed by the non-zero group elements, and the 1-factor corresponding to the
element c consists of all {a,b} for which a+b = c. This is sometimes called affine,
since the 1-factors are the parallel classes of lines in the affine space AG(d,2) (a
line has just two points in this space, so the lines form the 2-(2d,2,1) design.)

Another construction, which works for numbers n congruent to 2 or 4 mod 6,
starts with a Steiner triple system S of order n−1 (a 2-(n−1,3,1) design). Take
the point set of S together with one additional point ∞; for each element a ∈ S, the
corresponding 1-factor consists of the pairs {b,c} for which {a,b,c} is a block
of S, together with {∞,a}. If the Steiner triple system consists of the lines of
the projective space PG(d,2), the 1-factorisation is the same as the one above
derived from the elementary abelian 2-group. There are many non-isomorphic
Steiner triple systems, so this construction gives many different 1-factorisations
for appropriate values of n.

An even more prolific construction uses Latin squares. The construction works
as follows. First recall that a Latin square of order n is “equivalent” to a 1-
factorisation of the complete bipartite graph Kn,n: if the vertices are a1, . . . ,an,
b1, . . . ,bn, then we assign the edge {ai,b j} to the 1-factor ck if the (i, j) entry
of the Latin square is k. (See the topic essay on Latin squares: Equivalents and
Equivalences for further details.)

We also note before embarking on the construction that if we have a 1-factorisation
of K2k and remove one vertex, what remains is a near 1-factorisation of K2k−1:
there are 2k− 1 partial 1-factors, each consisting of k− 1 edges covering all but
one vertex; there is a bijection between vertices and partial 1-factors, a vertex
corresponding to the partial 1-factor not containing it.

We separate two cases according as n is congruent to 0 or 2 mod 4.

Case 1: n = 4k Take a Latin square of order 2k, and use it as a 1-factorisation of
the complete bipartite graph K2k,2k. Now choose two 1-factorisations of K2k,
the same or different, with a bijection between the one-factors in each. Place
one of these 1-factorisations on each of the parts of the complete bipartite
graph, and put together a 1-factor on one side and the corresponding 1-factor
on the other side to give a 1-factor on the whole graph.

Case 2: n = 4k− 2 Once again we take two 1-factorisations of K2k. Remove
a point from each, and choose a bijection between the sets of partial 1-
factors in the remaining structures; put together the corresponding partial
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1-factors. Each of the resulting partial 1-factors will omit two points, viz.,
corresponding points on the two sides; add this pair of points to produce a
complete 1-factor.

Now take a Latin square of order 2k− 1, and use it as a 1-factorisation of
K2k−1,2k−1. Select a 1-factor; remove it, and match up the two bipartite
blocks with the point sets of the K2k−1s so that corresponding points would
have been joined by edges of the missing 1-factor. The remaining 2k− 2
1-factors complete the 1-factorisation of K4k−2.

This construction shows that the number of 1-factorisations of Kn for even n
is very roughly the square root of the number of Latin squares of order n. More
precisely, the logarithms of the numbers of 1-factorisations and Latin squares are
1
2n2 logn and n2 logn respectively.

Further details of this material can be found in [1].

3 1-factorisations and Latin squares
We have seen that Latin squares can be used to construct many 1-factorisations.
Conversely, any 1-factorisation gives a special kind of Latin square, namely, a
symmetric Latin square with constant diagonal, as follows.

Number the 1-factors as c1, . . . ,cn−1. Now construct a Latin square as follows:
the (i, j) entry is equal to n if i = j, and to k if i 6= j and {i, j} lies in the 1-factor
ck.

Conversely any symmetric Latin square with constant diagonal (which we can
take to have entries n, by permuting the entries if necessary) arises from a 1-
factorisation by this construction.

Another way of regarding this is as follows. Each 1-factor can be thought of as
a fixed-point-free involution (a permutation all of whose cycles have length 2): the
cycles of the permutation are the edges of the 1-factor. Now take these permuta-
tions together with the identity, and write them in “list form” (that is, permutation
σ is represented as (a1, . . . ,an) if σ maps i to ai for i = 1, . . . ,n. Now these lists
form the rows of a Latin square. This is a conjugate of the one constructed above,
since the square just defined has (i, j) entry k if { j,k} is an edge in ci for i < n,
and (n, j) entry j.
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4 Small cases

4.1 The case n = 4

The 1-factorisation in this case is absolutely unique, since there are only three
ways of partitioning {1,2,3,4} into two pairs, namely {{1,2},{3,4}}, {{1,3},{2,4}}
and {{1,4},{2,3}}. This structure is the affine plane of order 2 with its usual par-
allelism, or can be regarded as derived from the Z/3Z or the trivial Steiner triple
system of order 3 by our earlier constructions.

4.2 The case n = 6

On a set of six points, there are 15 possible 1-factors: the three pairs can be chosen
in

(6
2

)(4
2

)(2
2

)
= 90 ways, but we must divide by the 3! = 6 possible orders in which

the pairs could have been chosen.
Sylvester discovered in the nineteenth century that there are precisely six 1-

factorisations, all isomorphic. We outline the argument.
The first two 1-factors together form a hexagon. Any additional 1-factor must

use either the three long diagonals of the hexagon, or one long and two short di-
agonals. Since there are altogether three long and six short diagonals, the second
case must occur always, and the remaining three 1-factors are uniquely deter-
mined. Hence two disjoint 1-factors can be completed to a 1-factorisation in a
unique way. Now the number of choices of two disjoint 1-factors is 15 ·8 = 120,
while there are 5 ·4 = 20 ways of saying which are the first two 1-factors in a given
1-factorisation; so there are 120/20 = 6 different 1-factorisations, all isomorphic.

Sylvester called edges, 1-factors and 1-factorisations duads, synthemes, and
synthematic totals respectively.

This remarkable object is connected with the exceptional outer automorphism
of the symmetric group of degree 6, and has been used to construct many other
combinatorial structures including the projective plane of order 4, the 5-(12,6,1)
Steiner system, and the Moore graph of valency 7 on 50 vertices. See [3] for
details.

5 Highly symmetric 1-factorisations
An automorphism (sometimes called a weak automorphism) of a 1-factorisation
is a permutation of the points which carries the set of 1-factors into itself. If every
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1-factor is fixed, then we have a strong automorphism.
Not surprisingly, the weak automorphisms form a group G (a subgroup of the

symmetric group Sn), while the strong automorphisms form a normal subgroup N
of G. The group N is an elementary abelian 2-group which acts semiregularly, but
the structure of G may be more interesting.

In the case of the affine 1-factorisations, the group of weak automorphisms
is the affine group AGL(d,2), while the strong automorphisms are precisely the
translations of the affine space.

For n = 4, the uniqueness of the 1-factorisation shows that any permutation
is an automorphism, so the (weak) automorphism group is the symmetric group
S4. This group has a normal subgroup N of order 4, the Klein group, consisting of
the identity and the three permutations corresponding to the three 1-factors; this
is the strong automorphism group. The automorphism group permutes the three
1-factors arbitrarily, in accordance with the isomorpism S4/N ∼= S3. Note that
AGL(2,2)∼= S4.

For n = 6, Sylvester’s result shows that the (weak) automorphism group is a
subgroup of index 6 in the symmetric group which acts on the five 1-factors as the
symmetric group S5. Its action on the points is that of the linear fractional group
PGL(2,5), which happens to be isomorphic to S5, and is triply transitive on the
six points. The group of strong automorphisms is trivial in this case.

Using the classification of the doubly transitive permutation groups (a conse-
quence of the classification of finite simple groups), Cameron and Korchmàros [2]
showed:

Theorem 1 A 1-factorisation of Kn which admits a doubly transitive group of
weak automorphisms must be one of the following: the affine 1-factorisation with
n = 2d; or a unique example for each of the values n = 6, 12, 28.

In the other direction, Wanless et al. have recently published a proof of the
folklore theorem that almost all 1-factorisations have trivial (weak) automorphism
groups.
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