Matroids

1 Definition

A matroid is an abstraction of the notion of linear independence in a vector space.
See Oxley [6], Welsh [7] for further information about matroids.

A matroid is a pair(E,.#), whereE is a set and# a non-empty family of
subsets oE (calledindependent setsatisfying the conditions:

@lIfle #andJCl,thel € .7.

(b) (theExchange Axiof 1,1, € .# and|l,| > |l,|, then there exists € I, \ |;
such that, U{e} € .7,

The following are examples of matroids:

e E isthe edge set of a grajih; a set of edges is independent if and only if it
is a forest. (Such a matroid isgaaphic matroid)

E is a set of vectors in a vector spa¢ea set of vectors is independent if
and only if it is linearly independent. (Such a matroid iegtor matroid)

e E is a subset of an algebraically closed fielca set of field elements is in-
dependentif and only if it is algebraically independent over an algebraically
closed subfield of L. (Such a matroid is called algebraic matroid)

e E is a set with a family.«Z = (A, :i € |) of subsets; a subset &fis inde-
pendent if and only if it is a partial transversal.ef. (Such a matroid is a
transversal matroid

e Let .« be a family of subsets d& such tha€ ¢ <7 and|ANA'| < k-2 for
all A,A’ € o7. A subset of size at moktis independent if and only if it is not
contained in any member @f. (Such a matroid is called@aving matroid
Examples include the case whetgéis the set of blocks of a Steiner system

S(k_17|7n)')

The exchange axiom implies that all maximal independent sets have the same
cardinality r; such sets are callebasesof M, andr is therank of M. More
generally, for any subsé of E, the maximal independent subsetsfoéll have
the same rank; this is theank of A, and is denoted by(A). Other matroid
concepts:
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e acircuit is a minimal element of?(E) \ .#;

e aflatis a subseF of E with the property that, for angec E, p(FU{e}) =
p(F) impliesee F;

e a hyperplane His a maximal proper flat oM (a flat satisfyingp(H) =
p(E)—1).

Matroids can be axiomatised in terms of their bases, circuits, rank function,
flats, or hyperplanes.

It is convenient to allow a vector matroid to have “repeated elements”, just as
a graphic matroid arising from a multigraph can. Thus, given a fauily. . ., vy)
of vectors in a vector spadg we takeE = {1,...,n}, and define a subsebf E
to be independent if the subfamily, : i € I) of vectors is linearly independent. If
V = FX for some fieldF, we regard the vectors as the columns &an matrix
overF. (A “matroid” is a generalisation of a “matrix” in this sense.)

The dual of a matroidM is the matroidM* on the same ground set whose
bases are the complements of the baséd.dflote that(M*)* = M.

Theuniform matroid |} , is the matroid om elements whose independent sets

are all the subsets of sike It is easy to see thdM, ) =M, ..

2 Geometric matroids

A loopin a matroidM on E is an elemene with p({e}) = 0 (that is, such that
{e} is dependent). Two non-loogs, e, areparallel if p({e;,e,}) =1 (that is,
such that{e;,e,} is a circuit). Parallelism is an equivalence relation on the set of
non-loops.

A matroid isgeometridf it has no loops and parallel elements are equal; that
is, if all sets of size at most 2 are independent.

Classically, we obtain a projective space from a vector space by deleting the
zero vector and identifying vectors which are scalar multiples of each other. The
same procedure works in a general matroid: if we delete the loops, and then iden-
tify the elements in each parallel class, we obtain a geometric matroid.

Geometric matroids are sometimes called “combinatorial geometries”.
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3 Deletion and contraction

An elementk of a matroid is aloop if and only if it is contained in no basis. Dually,
we say thak is acoloopif it is contained in every basis; that is, if it is a loop in
the dual matroid.

Note that in a graphic matroid, a loop is an edge which is a loop in the graph-
theoretic sense, while a coloop is an edge which midge or isthmusin the
graph.

LetM = (E,.#) be a matroid, and an element oM.

If eis not a coloop, we define the matroid obtaineddeyeting eto be

M\e= (E\{e},{l € #:e¢1}).

Dually, if eis not a loop, we define the matroid obtaineddmntracting eto

be
M/e= (E\{e},{l\{e}:ecl e.7}).

Clearly we have
(M/e)* =M*\e

if eis not a loop.
In a graphic matroid, deletion and contraction of an edge coincide with the
usual graph-theoretic operations with the same names.

4 Matroids and codes

LetC be alinear code of lengthand dimensiotk over GKq) (see the topic essay
on codes). LeG be a generator matrix fa€, and associate witl the vector
matroidM formed by the columns d&. In other wordsg = {1,...,n}; and a set

| C E isindependent if and only if the family of columns @fwith indices inl is
linearly independent.

The correspondence between matroid and code is preserved by the “natural”
equivalences on each of them. For elementary row operations appl&teave
C unchanged and simply change the representatids; afhile column permuta-
tions and multiplication of columns by non-zero scalars don't afféeind simply
replaceC by amonomial-equivalentode.

We see that a setof coordinate positions is independenthhif and only if
all possiblgll |-tuples of field elements occur in these positions in codewor@s of
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in other words] does not contain the support of a non-zero element of the dual
codeC™.

The operations of deletion and contractionMrcorrespond precisely to the
operations of puncturing and shorteni@at a coordinate position. The matroid
associated with the dual co@ of C is the duaM* of M.

Theweightwt(c) of a codeword: is the number of non-zero coordinatescof
The minimum weightf a codeC is the smallest weight of a non-zero codeword
of C, and theweight enumeratoof C is the homogeneous polynomial

n - .
W, (X,Y) = Xn_Wt(C)YWt(C) — Aan_IYI,
P 2,

whereA, is the number of codewords Gfof weighti. TheMacWilliams relation
gives the weight enumerator 6f- in terms of that ofC:

W, (X,Y) = |—(1:|wc(x +(g—1)Y,X-Y).

5 Tutte polynomial

The Tutte polynomiabf a matroidM = (E,.#) with rank functionp is the two-
variable polynomiall (M) given by the formula

T(M;x,y) = AgE(X— 1)pE—pA(y_ 1)\A\—pA‘

There is also a convenient recursive expression for the Tutte polynomial in
terms of deletion and contraction:

(@) T(0;x,y) =1, where 0 is the empty matroid.
(b) If eis a loop, therT (M; x,y) = yT(M\& X,y).
(c) If eis a coloop, the (M;x,y) = XT(M/gXx,y).
(d) If eis neither a loop nor a coloop, then
T(Mixy) =T(M\exy) +T(M/gx.y).
It is not hard to show that the Tutte polynomials of a matroid and its dual are

related byT (M*;x,y) = T(M;y,X).
The Tutte polynomial has many important specialisations. For example:
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e T(M;1,1) is the number of bases &fl, T(M;2,1) is the number of in-
dependent sets, an(M; 1,2) the number of spanning sets. (Of course,
T(M;2,2) =2")

e If M is the graphic matroid associated with the gr&phthen the chromatic
polynomial of G (which counts the proper colourings of the vertice<sof
with k colours) is given by

Ps(k) = (~1)PCKOT(M(G); 1-k,0),

wherek(G) is the number of connected component&andp (G) + x(G)

the number of vertices. Several other graph polynomials, such as those
counting nowhere-zero flows with values in an abelian group of dkder

or the probability that the graph remains connected if edges are removed
independently with probability, are also specialisations of the Tutte poly-
nomial.

¢ If M is associated with a linear co@eover GHQ), then the weight enumer-
ator ofC is given by

WC(X,Y) — Ynfdim(C) (X . Y)dim(C)T (M, X "‘)((q__Yl)Y’ é)

(a theorem of Greene [3]).

From Greene’s Theorem and the fact that dual codes are associated with dual ma-
troids andl (M*;x,y) =T (M;y, X), itis a simple matter to deduce the MacWilliams
relation.

Since the Tutte polynomial carries so much information, it is not surprising
that it is difficult to compute in general: see Welsh [8]. We will see below a
class of matroids for which the Tutte polynomial can be computed more easily,
the perfect matroid designs

6 IBIS groups

Let G be a permutation group on the §etA basefor G is a sequencee,,. .. ,€,)

of points ofE whose pointwise stabiliser (@) is the identity. A base isedun-
dantif some pointg is fixed by the pointwise stabiliser of the preceding points
in the base (such a point can be omitted without affecting the defining property of
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a base); it isrredundantif this doesn’'t happen. Note that the property of redun-
dancy may depend on the order of the base points.

Cameron and Fon-Der-Flaass [1] showed that the following three conditions
on a permutation grou@ are equivalent:

e all irredundant bases contain the same number of elements;
¢ irredundant bases are preserved by re-ordering;
e the irredundant bases are the bases of a matroid.

They called a group satisfying these propertiedBii$ group (for Irredundant
Bases ol nvariantSize).

Cameron and Fon-Der-Flaass showed thag i$ an IBIS group whose asso-
ciated matroid is uniformt)y , so that everk-tuple is an irredundant base fGr
with k > 1, thenG is (k— 1)-transitive (see the topic essay on permutation groups
for this concept). In particular:

e if k=2, thenG is aFrobenius groupand a lot is known about its structure
(theorems of Frobenius, Zassenhaus and Thompson);

o if k> 2, thenG is explicitly known.

Another case where a classification is known is the following. The permu-
tation groupG is base-transitivef it permutes its irredundant bases transitively.
Clearly in this case all the bases have the same size, aGdsan IBIS group.

Such groups were completely determined by Maund [4], using the Classification
of Finite Simple Groups; those whose associated matroid has rank at least 7 were
found by an “elementary” (but by no means easy) argument by Zil'ber [9].

Any code gives rise to an IBIS group, whose matroid is an “inflation” of that of
the code, as follows. Lé&l be a linear code of lengthover GKq). The additive
group ofC acts as a permutation gro@on{1,...,n} x GKq) by the rule

c=(Cy,...,cn): (i,a) — (i,a+q).

ThenGis an IBIS group whose rank is equal to the dimensio@.ofhe projection
(i,a) — i collapses classes of parallel elements and takes the matrGidoothe
matroid ofC.
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7 Perfect matroid designs

A perfect matroid desigror PMD, is a matroidM, of rankr say, for which there
existintegerd, f;,..., f, such that, for 6<i <r, any flat of rank has cardinality
f.. The tuple(fy, f;,..., fr) is thetypeof M. Note thatf, = nis the cardinality of
the set of elements.

It is clear that the matroid arising from a base-transitive permutation group
is a PMD: any two independent sets of the same size are equivalent under an
automorphism, and hence so are their spans.

If M is a PMD of typg( fy, f;,. .., ), then the geometrisation b is a PMD of
type (f, f1,..., f/), wheref/ = (f, — f,)/(f, — f,). In particular,f; =0, f{ = 1.

The most familiar examples of geometric PMDs are (possibly truncated) pro-

jective and affine spaces over finite fields: we have
e f,=(d —1)/(g—1) for projective spaces over G);
o fy=0andf,=d~1fori > 0 for affine spaces over G§).

A Steiner systeng(t, k, v) is a PMD: the-flats are thé-sets fori < t, thet-flats
are the blocks, and the rank of the matroidl4s1.

Apart from these examples, the only known PMDs arise fromHak triple
systems A Hall triple system is a Steiner triple system, not an affine space over
GF(3), in which any three non-collinear points lie in a subsystem of size 9 (iso-
morphic to the affine plane over G§)). The smallest example of such a system
has 81 points, and was constructed by Marshall Hall Jr. The number of points in
a Hall triple system is necessarily a power of 3, and all powers of 3 greater than
27 occur. Now we obtain a PMD of rank 4 by taking the flats of ranks 1, 2, 3 to
be the points, triples, and 9-point subsystems respectively.

Ina PMD of type(f,, f;,..., fr), if i <], then the number of-flats containing
a giveni-flat is equal to

(fr— F)(fr— i) (Fr—f,_)
(f; = f)(f5—fi ) (fj - fj71>'

In particular, in a geometric PMD, the points anfiats form a 2-design for ¥
i <r—1. This construction includes the familiar construction of designs from the
subspaces of projective and affine spaces.

Mphako [5] showed that the Tutte polynomial of a PMD can be calculated
explicitly if the type is known.

See Deza [2] for a general reference on PMDs.
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