
Matroids

1 Definition

A matroid is an abstraction of the notion of linear independence in a vector space.
See Oxley [6], Welsh [7] for further information about matroids.

A matroid is a pair(E,I ), whereE is a set andI a non-empty family of
subsets ofE (calledindependent sets) satisfying the conditions:

(a) If I ∈I andJ⊆ I , theJ ∈I .

(b) (theExchange Axiom) If I1, I2 ∈I and|I2|> |I1|, then there existse∈ I2\ I1
such thatI1∪{e} ∈I .

The following are examples of matroids:

• E is the edge set of a graphG; a set of edges is independent if and only if it
is a forest. (Such a matroid is agraphic matroid.)

• E is a set of vectors in a vector spaceV; a set of vectors is independent if
and only if it is linearly independent. (Such a matroid is avector matroid.)

• E is a subset of an algebraically closed fieldL; a set of field elements is in-
dependent if and only if it is algebraically independent over an algebraically
closed subfieldK of L. (Such a matroid is called analgebraic matroid.)

• E is a set with a family(A = (Ai : i ∈ I) of subsets; a subset ofE is inde-
pendent if and only if it is a partial transversal ofA . (Such a matroid is a
transversal matroid.)

• Let A be a family of subsets ofE such thatE /∈A and|A∩A′| ≤ k−2 for
all A,A′ ∈A . A subset of size at mostk is independent if and only if it is not
contained in any member ofA . (Such a matroid is called apaving matroid.
Examples include the case whereA is the set of blocks of a Steiner system
S(k−1, l ,n).)

The exchange axiom implies that all maximal independent sets have the same
cardinality r; such sets are calledbasesof M, and r is the rank of M. More
generally, for any subsetA of E, the maximal independent subsets ofA all have
the same rank; this is therank of A, and is denoted byρ(A). Other matroid
concepts:
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• acircuit is a minimal element ofP(E)\I ;

• a flat is a subsetF of E with the property that, for anye∈ E, ρ(F ∪{e}) =
ρ(F) impliese∈ F ;

• a hyperplane His a maximal proper flat ofM (a flat satisfyingρ(H) =
ρ(E)−1).

Matroids can be axiomatised in terms of their bases, circuits, rank function,
flats, or hyperplanes.

It is convenient to allow a vector matroid to have “repeated elements”, just as
a graphic matroid arising from a multigraph can. Thus, given a family(v1, . . . ,vn)
of vectors in a vector spaceV, we takeE = {1, . . . ,n}, and define a subsetI of E
to be independent if the subfamily(vi : i ∈ I) of vectors is linearly independent. If
V = Fk for some fieldF , we regard the vectors as the columns of ak×n matrix
overF . (A “matroid” is a generalisation of a “matrix” in this sense.)

The dual of a matroidM is the matroidM∗ on the same ground set whose
bases are the complements of the bases ofM. Note that(M∗)∗ = M.

Theuniform matroid Uk,n is the matroid onn elements whose independent sets
are all the subsets of sizek. It is easy to see that(Mk,n)∗ = Mn−k,n.

2 Geometric matroids

A loop in a matroidM on E is an elemente with ρ({e}) = 0 (that is, such that
{e} is dependent). Two non-loopse1,e2 areparallel if ρ({e1,e2}) = 1 (that is,
such that{e1,e2} is a circuit). Parallelism is an equivalence relation on the set of
non-loops.

A matroid isgeometricif it has no loops and parallel elements are equal; that
is, if all sets of size at most 2 are independent.

Classically, we obtain a projective space from a vector space by deleting the
zero vector and identifying vectors which are scalar multiples of each other. The
same procedure works in a general matroid: if we delete the loops, and then iden-
tify the elements in each parallel class, we obtain a geometric matroid.

Geometric matroids are sometimes called “combinatorial geometries”.
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3 Deletion and contraction

An elementeof a matroid is a loop if and only if it is contained in no basis. Dually,
we say thate is acoloopif it is contained in every basis; that is, if it is a loop in
the dual matroid.

Note that in a graphic matroid, a loop is an edge which is a loop in the graph-
theoretic sense, while a coloop is an edge which is abridge or isthmusin the
graph.

Let M = (E,I ) be a matroid, andean element ofM.
If e is not a coloop, we define the matroid obtained bydeleting eto be

M\e= (E \{e},{I ∈I : e /∈ I}).

Dually, if e is not a loop, we define the matroid obtained bycontracting eto
be

M/e= (E \{e},{I \{e} : e∈ I ∈I }).

Clearly we have
(M/e)∗ = M∗\e

if e is not a loop.
In a graphic matroid, deletion and contraction of an edge coincide with the

usual graph-theoretic operations with the same names.

4 Matroids and codes

LetC be a linear code of lengthn and dimensionk over GF(q) (see the topic essay
on codes). LetG be a generator matrix forC, and associate withC the vector
matroidM formed by the columns ofG. In other words,E = {1, . . . ,n}; and a set
I ⊆ E is independent if and only if the family of columns ofG with indices inI is
linearly independent.

The correspondence between matroid and code is preserved by the “natural”
equivalences on each of them. For elementary row operations applied toG leave
C unchanged and simply change the representation ofM; while column permuta-
tions and multiplication of columns by non-zero scalars don’t affectM and simply
replaceC by amonomial-equivalentcode.

We see that a setI of coordinate positions is independent inM if and only if
all possible|I |-tuples of field elements occur in these positions in codewords ofC;

The Encyclopaedia of Design Theory Matroids/3



in other words,I does not contain the support of a non-zero element of the dual
codeC⊥.

The operations of deletion and contraction onM correspond precisely to the
operations of puncturing and shorteningC at a coordinate position. The matroid
associated with the dual codeC⊥ of C is the dualM∗ of M.

Theweightwt(c) of a codewordc is the number of non-zero coordinates ofc.
Theminimum weightof a codeC is the smallest weight of a non-zero codeword
of C, and theweight enumeratorof C is the homogeneous polynomial

WC(X,Y) = ∑
c∈C

Xn−wt(c)Ywt(c) =
n

∑
i=0

AiX
n−iYi ,

whereAi is the number of codewords ofC of weight i. TheMacWilliams relation
gives the weight enumerator ofC⊥ in terms of that ofC:

W
C⊥

(X,Y) =
1
|C|

WC(X +(q−1)Y,X−Y).

5 Tutte polynomial

TheTutte polynomialof a matroidM = (E,I ) with rank functionρ is the two-
variable polynomialT(M) given by the formula

T(M;x,y) = ∑
A⊆E

(x−1)ρE−ρA(y−1)|A|−ρA.

There is also a convenient recursive expression for the Tutte polynomial in
terms of deletion and contraction:

(a)T( /0;x,y) = 1, where /0 is the empty matroid.

(b) If e is a loop, thenT(M;x,y) = yT(M\e;x,y).

(c) If e is a coloop, thenT(M;x,y) = xT(M/e;x,y).

(d) If e is neither a loop nor a coloop, then

T(M;x,y) = T(M\e;x,y)+T(M/e;x,y).

It is not hard to show that the Tutte polynomials of a matroid and its dual are
related byT(M∗;x,y) = T(M;y,x).

The Tutte polynomial has many important specialisations. For example:
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• T(M;1,1) is the number of bases ofM, T(M;2,1) is the number of in-
dependent sets, andT(M;1,2) the number of spanning sets. (Of course,
T(M;2,2) = 2n.)

• If M is the graphic matroid associated with the graphG, then the chromatic
polynomial ofG (which counts the proper colourings of the vertices ofG
with k colours) is given by

PG(k) = (−1)ρ(G)kκ(G)T(M(G);1−k,0),

whereκ(G) is the number of connected components ofG andρ(G)+κ(G)
the number of vertices. Several other graph polynomials, such as those
counting nowhere-zero flows with values in an abelian group of orderk,
or the probability that the graph remains connected if edges are removed
independently with probabilityp, are also specialisations of the Tutte poly-
nomial.

• If M is associated with a linear codeC over GF(q), then the weight enumer-
ator ofC is given by

WC(X,Y) = Yn−dim(C)(X−Y)dim(C)T

(
M;

X +(q−1)Y
X−Y

,
X
Y

)
(a theorem of Greene [3]).

From Greene’s Theorem and the fact that dual codes are associated with dual ma-
troids andT(M∗;x,y) = T(M;y,x), it is a simple matter to deduce the MacWilliams
relation.

Since the Tutte polynomial carries so much information, it is not surprising
that it is difficult to compute in general: see Welsh [8]. We will see below a
class of matroids for which the Tutte polynomial can be computed more easily,
theperfect matroid designs.

6 IBIS groups

Let G be a permutation group on the setE. A basefor G is a sequence(e1, . . . ,eb)
of points ofE whose pointwise stabiliser (inG) is the identity. A base isredun-
dant if some pointei is fixed by the pointwise stabiliser of the preceding points
in the base (such a point can be omitted without affecting the defining property of

The Encyclopaedia of Design Theory Matroids/5



a base); it isirredundantif this doesn’t happen. Note that the property of redun-
dancy may depend on the order of the base points.

Cameron and Fon-Der-Flaass [1] showed that the following three conditions
on a permutation groupG are equivalent:

• all irredundant bases contain the same number of elements;

• irredundant bases are preserved by re-ordering;

• the irredundant bases are the bases of a matroid.

They called a group satisfying these properties anIBIS group(for I rredundant
Bases ofInvariantSize).

Cameron and Fon-Der-Flaass showed that, ifG is an IBIS group whose asso-
ciated matroid is uniformUk,n, so that everyk-tuple is an irredundant base forG,
with k> 1, thenG is (k−1)-transitive (see the topic essay on permutation groups
for this concept). In particular:

• if k = 2, thenG is aFrobenius group, and a lot is known about its structure
(theorems of Frobenius, Zassenhaus and Thompson);

• if k> 2, thenG is explicitly known.

Another case where a classification is known is the following. The permu-
tation groupG is base-transitiveif it permutes its irredundant bases transitively.
Clearly in this case all the bases have the same size, and soG is an IBIS group.
Such groups were completely determined by Maund [4], using the Classification
of Finite Simple Groups; those whose associated matroid has rank at least 7 were
found by an “elementary” (but by no means easy) argument by Zil’ber [9].

Any code gives rise to an IBIS group, whose matroid is an “inflation” of that of
the code, as follows. LetC be a linear code of lengthn over GF(q). The additive
group ofC acts as a permutation groupG on{1, . . . ,n}×GF(q) by the rule

c = (c1, . . . ,cn) : (i,a) 7→ (i,a+ci).

ThenG is an IBIS group whose rank is equal to the dimension ofC. The projection
(i,a) 7→ i collapses classes of parallel elements and takes the matroid ofG to the
matroid ofC.
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7 Perfect matroid designs

A perfect matroid design, or PMD, is a matroidM, of rankr say, for which there
exist integersf0, f1, . . . , fr such that, for 0≤ i ≤ r, any flat of ranki has cardinality
fi . The tuple( f0, f1, . . . , fr) is thetypeof M. Note thatfr = n is the cardinality of
the set of elements.

It is clear that the matroid arising from a base-transitive permutation group
is a PMD: any two independent sets of the same size are equivalent under an
automorphism, and hence so are their spans.

If M is a PMD of type( f0, fi , . . . , fr), then the geometrisation ofM is a PMD of
type( f ′0, f ′1, . . . , f ′r ), where f ′i = ( fi− f0)/( f1− f0). In particular,f ′0 = 0, f ′1 = 1.

The most familiar examples of geometric PMDs are (possibly truncated) pro-
jective and affine spaces over finite fields: we have

• fi = (qi−1)/(q−1) for projective spaces over GF(q);

• f0 = 0 and fi = qi−1 for i > 0 for affine spaces over GF(q).

A Steiner systemS(t,k,v) is a PMD: thei-flats are thei-sets fori < t, thet-flats
are the blocks, and the rank of the matroid ist +1.

Apart from these examples, the only known PMDs arise from theHall triple
systems. A Hall triple system is a Steiner triple system, not an affine space over
GF(3), in which any three non-collinear points lie in a subsystem of size 9 (iso-
morphic to the affine plane over GF(3)). The smallest example of such a system
has 81 points, and was constructed by Marshall Hall Jr. The number of points in
a Hall triple system is necessarily a power of 3, and all powers of 3 greater than
27 occur. Now we obtain a PMD of rank 4 by taking the flats of ranks 1, 2, 3 to
be the points, triples, and 9-point subsystems respectively.

In a PMD of type( f0, f1, . . . , fr), if i < j, then the number ofj-flats containing
a giveni-flat is equal to

( fr − fi)( fr − fi+1) · · ·( fr − f j−1)

( f j − fi)( f j − fi+1) · · ·( f j − f j−1)
.

In particular, in a geometric PMD, the points andi-flats form a 2-design for 1≤
i ≤ r−1. This construction includes the familiar construction of designs from the
subspaces of projective and affine spaces.

Mphako [5] showed that the Tutte polynomial of a PMD can be calculated
explicitly if the type is known.

See Deza [2] for a general reference on PMDs.
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