
Latin squares: Equivalents and equivalence

1 Introduction

This essay describes some mathematical structures ‘equivalent’ to Latin squares
and some notions of ‘equivalence’ of such structures.

According to theHandbook of Combinatorial Design[2], Theorem II.1.5, a
Latin square of ordern is equivalent to

• the multiplication table (Cayley table) of a quasigroup onn elements;

• a transversal design of index 1;

• a (3,n)-net;

• an orthogonal array of strength 2 and index 1;

• a 1-factorisation of the complete bipartite graphKn,n;

• an edge-partition of the complete tripartite graphKn,n,n into triangles;

• a set ofn2 mutually non-attacking rooks on ann×n×n board;

• a single error detecting code of word length 3, withn2 words from ann-
symbol alphabet.

We add two further items to this list:

• a strongly regular graph of Latin square type;

• a sharply transitive set of permutations.

The statement is true but not sufficiently precise, since it is not explained what
‘equivalent’ means. The imprecision of which this is just an example has led to a
number of inaccuracies in the literature. This essay will explain how to transform
Latin squares into structures of each of these types, what notions of equivalence
of Latin squares result from the natural definitions of isomorphism of these struc-
tures, and how the confusion may be avoided.
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2 Latin squares

A Latin squareof ordern is ann×n array in which each of then2 cells contains
a symbol from an alphabet of sizen, such that each symbol in the alphabet occurs
just once in each row and once in each column.

The alphabet is completely arbitrary, but it is often convenient to take it to be
the set{1,2, . . . ,n}. This has the advantage that the same set indexes the rows and
columns of the square.

It is clear that, if we permute in any way the rows, or the columns, or the
symbols, of a Latin square, the result is still a Latin square. We say that two
Latin squaresL andL′ (using the same symbol set) areisotopicif there is a triple
( f ,g,h), where f is a row permutation,g a column permutation, andh a symbol
permutation, carryingL to L′: this means that, if the(i, j) entry of L is k, then
the ( f (i),g( j)) entry of L′ is h(k). The triple( f ,g,h) is called anisotopy. The
relation of being isotopic is an equivalence on the set of Latin squares with given
symbol set; its equivalence classes are calledisotopy classes.

The notion of isotopy can be extended to Latin squaresL,L′ with different
alphabets by allowingh to be a bijective map from the alphabet ofL to that ofL′.
In this wider sense, any Latin square of ordern is isotopic to one with alphabet
{1, . . . ,n}.

A Latin square with symbol set{1, . . . ,n} is normalisedif the (i,1) and(1, i)
entries are both equal toi, for all i ∈ {1, . . . ,n}. Given any Latin square, we can
obtain from it a normalised Latin square by row and column permutations. So, in
particular, every Latin square is isotopic to a normalised Latin square.

Despite the fact that the definition of a Latin square gives different roles to the
rows, columns, and symbols, there are extra ‘equivalences’ connecting them. To
each permutationπ of the set{r,c,s}, there is a function on Latin squares. We
give two examples (which suffice to generate all six):

• L(r,c) has( j, i) entryk if and only if L has(i, j) entryk (in other words,L(r,c)

is the transpose ofL);

• L(r,s) has(k, j) entry i if and only if L has(i, j) entryk.

The six Latin squares obtained fromL in this way are theconjugatesof L.
Themain classor speciesof a Latin square is the union of the isotopy classes

of its conjugates. Two Latin squaresL,L′ aremain class equivalentif they belong
to the same main class; that is, ifL is isotopic to a conjugate ofL′. Each main
class is the union of 1, 2, 3 or 6 isotopy classes.

The Encyclopaedia of Design Theory Latin squares/2



One of the important properties of main class equivalence is that it preserves
various combinatorial properties. Here are some examples. LetL be a Latin square
of ordern.

• A subsquareof L of order k is a set ofk rows andk columns in whose
cells justk symbols occur. (Thesek2 cells form a Latin square of orderk
if the remaining cells are removed.) A subsquare of order 2 is called an
intercalate.

• A transversalof L is a setT of n cells, such that each row contains one
member ofT, each column contains one member ofT, and each symbol
occurs in one member ofT. Now the squareL possesses an orthogonal mate
if and only if then2 cells can be partitioned inton transversals. (Associate
one symbol of a new alphabet with each transversal, and letL′ have(i, j)
entryk if cell (i, j) lies in transversalk.)

Now the following is easily checked:

Proposition 1 If two Latin squares are main class equivalent, then they have the
same number of subsquares of each order, the same number of transversals, and
the same number of partitions into transversals.

For example, the two Latin squares shown below belong to different main
classes since they have different numbers of intercalates (12 and 4 respectively)
and different numbers of transversals (8 and 0 respectively).

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

A Web page giving the isotopy classes and main classes of Latin squares of
small orders is maintained by McKay [3]. The numbers of Latin squares, isotopy
classes, and main classes are given in sequences numbered A002860, A040082,
A003090 in theOn-Line Encyclopedia of Integer Sequences[4].

3 Quasigroups and loops

A binary systemis a pair(Q,∗), whereQ is a set and∗ a binary operation onQ
(a function fromQ×Q to Q). We usually write the image of the operation on the
pair (a,b) asa∗b.
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A quasigroupis a binary system(Q,∗) satisfying the two conditions

• for anya,b∈Q, there is a uniquex∈Q satisfyinga∗x = b;

• for anya,b∈Q, there is a uniquey∈Q satisfyingy∗a = b.

We often write the elementsx andy above asa\b andb/a; these new operations
are calledleft divisionandright divisionof b by a. These binary operations give
new quasigroups on the setQ.

Thedualof a binary system(Q,∗) is the binary system(Q,◦) whose operation
is defined bya◦b = b∗a. It is also a quasigroup if(Q,∗) is.

An operation tableorCayley tableof a set with a binary operation is the square
array, having rows and columns indexed byQ in some order (the same order for
rows as for columns), for which the entry in rowa and columnb is a∗b. Now we
have the following observation:

Proposition 2 (a) The binary system(Q,∗) is a quasigroup if and only if some
(and hence any) Cayley table for it is a Latin square.

(b) If (Q,∗) is a quasigroup, then the conjugates of its Cayley table are the Cayley
tables of(Q,∗), (Q,\) and(Q,/) and their duals.

We note that, for some applications, the orders of the row and column labels
are not required to be the same. This doesn’t change the concept of “quasigroup”
but the correspondence between quasigroups and Latin squares is rather different.)

For algebraic structures such as quasigroups, the appropriate notion of equiva-
lence isisomorphism. An isomorphism from(Q,∗) to (R,◦) is a bijective function
f : Q→ Rsuch that, for alla,b∈Q, we have

f (a)◦ f (b) = f (a∗b).

An automorphismof a quasigroup(Q,∗) is an isomorphism from(Q,∗) to itself.
Two Cayley tables representing the same quasigroup differ only in the order

of the elements labelling the rows and columns; thus, one is obtained from the
other by applying simultaneously the same permutation to the rows and columns
(including their labels). If it happens that the resulting square could alternatively
be obtained by applying the given permutation to the row and column labels and
to the entries of the square, then it is an automorphism of the quasigroup. For
example, in the second quasigroup in the list below, the permutation(a)(bc) is an
automorphism.
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We see that isomorphism of quasigroups is a much finer relation than isotopy
of Latin squares; isomorphisms are isotopies( f , f , f ) whose row, column and
symbol permutations are equal. So, although there is only one isotopy class of
Latin squares of order 3, there are five isomorphism classes of quasigroups, as
shown below.

∗ a b c
a a c b
b c b a
c b a c

∗ a b c
a a b c
b b c a
c c a b

∗ a b c
a a b c
b c a b
c b c a

∗ a b c
a a c b
b b a c
c c b a

∗ a b c
a b a c
b a c b
c c b a

These five quasigroups can be distinguished by algebraic properties. An ele-
menta of a quasigroup(Q,∗) is an idempotentif a∗a = a; it is a left identity if
a∗x = x for all x∈Q; a right identity is defined analogously; anda is atwo-sided
identity if it is both a left and a right identity. Any isomorphism must preserve
these properties of elements. Now

• in the first quasigroup, every element is an idempotent;

• the second quasigroup has one idempotent, which is a two-sided identity;

• the third quasigroup has one idempotent, which is a left but not a right
identity;

• the fourth quasigroup has one idempotent, which is a right but not a left
identity;

• the fifth quasigroup has no idempotents.

It is a simple exercise to show that the quasigroup defined by each of the twelve
Latin squares with symbol set{a,b,c} is isomorphic to one of these five.

A loop is a quasigroup which has a two-sided identity. This element is neces-
sarily unique; for, ifa is a left identity andb a right identity, thena = a∗b = b.
(More is true: a quasigroup cannot have two different left identities. For, if
a∗x = x = b∗x, thena = b by cancellation.)

If we write the Cayley table of a loop so that the first element is the identity,
then the elements in the first row are the same as the row labels, and similarly for
columns. In particular, if we use the labels 1, . . . ,n, then the resulting Latin square
is normalised. So a loop is a quasigroup which has a normalised Latin square
as a Cayley table (when the labels occur in natural order). However, different
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normalised Latin squares can correspond to isomorphic loops! However, since the
identity is unique, any quasigroup-isomorphism of loops is a loop-isomorphism.

Of the five quasigroups of order 3 (up to isomorphism), just one is a loop (the
second). It is even a group. (A group can be defined as a loop satisfying the
associative law a∗ (b∗c) = (a∗b)∗c for all a,b,c.)

The sequences enumerating quasigroups and loops are numbers A057991 and
A057771 in the in theOn-Line Encyclopedia of Integer Sequences[4].

4 Transversal designs and nets

Let L be a Latin square. Associated withL is an incidence structure called a 3-
net, defined as follows. The points are then2 cells of the square, and there are
three types of lines: then rows; then columns; and, for each of then symbols in
the alphabet, the set of cells containing that symbol. Nets are also calledsquare
lattice designs.

The net has the following properties:

(a) There aren2 points and 3n lines.

(b) Each line containsn points, and each point lies on 3 lines.

(c) Two points lie on at most one line.

(d) The design isresolvable: the lines can be partitioned into three families ofn
lines, each of which is a partition of the set of points. Moreover, two lines
from different families intersect in a (unique) point.

The three families of lines in the resolution correspond to rows, columns, and
symbols. The second sentence of (d) shows that there is a unique resolution: two
lines belong to the same family if and only if they are disjoint.

Because of this uniqueness, it is possible to recover the Latin square from a
structure satisfying (a)–(d). Label the three resolution classesR, C, andS, and
number the lines in each class from 1 ton. Now the Latin square has(i, j) entryk
if and only if the (unique) point on theith line ofRand thejth line ofC is also on
thekth line ofS.

An isomorphism of nets is a bijection between their point sets which carries
lines to lines. It is clear from the above reconstruction that two nets are isomorphic
if and only if the Latin squares used to construct them are main-class equivalent.
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The dual of an incidence structure is obtained by interchanging the roles of
‘point’ and ‘line’ while preserving the relation of incidence. Now the dual of a net
is a special type oftransversal design. The defining conditions are:

(a′) There are 3n points andn2 lines.

(b′) Each line contains 3 points, and each point lies onn lines.

(c′) Two points lie on at most one line.

(d′) The points can be partitioned into three families ofn points, such that each
line contains one point of each family. Moreover, two points from different
families lie on a (unique) line.

The families in (d′) are sometimes calledgroups, though the word does not carry
its algebraic sense.

One advantage of this representation is that it translates subsquares, transver-
sals and orthogonal mates of a Latin square into familiar notions of design theory:
subdesigns, parallel classes, and resolutions (parallelisms) respectively.

Two such transversal designs are isomorphic if and only if the nets dual to
them are isomorphic; so this isomorphism is the same as main-class equivalence
of the Latin squares.

Thecomplete tripartite graph Kn,n,n has 3n vertices partitioned into three sets
of sizen, with any two vertices in different classes being joined by an edge. A col-
lection of triangles in such a graph with the property that every edge is contained
in exactly one triangle (a partition of the edge set into triangles) is obviously the
same thing as a transversal design of the type just discussed, and the same consid-
erations apply.

5 Strongly regular graphs

Given a Latin squareL, we define a graph as follows: the vertices of the graph are
the n2 cells of the Latin square; two vertices are adjacent if they lie in the same
row or column or contain the same symbol. In other words, it is thecollinearity
graphof the net associated with the Latin square: the vertices are the points of the
net, two vertices adjacent if they are collinear.

Such a graph is called aLatin square graph. It is strongly regularwith param-
eters(n2,3(n−1),n,6): this means that
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• there aren2 vertices;

• each vertex is joined to 3(n−1) others;

• two adjacent vertices haven common neighbours;

• two non-adjacent vertices have 6 common neighbours.

The following result is due to Bruck [1].

Proposition 3 (a) If n> 23, then any strongly regular graph with parameters
(n2,3(n−1),n,6) is a Latin square graph.

(b) If n> 4, then any isomorphism of Latin square graphs is induced by a main-
class equivalence of the Latin squares.

Here the a graph isomorphism is a bijection between the vertex sets which car-
ries edges to edges and non-edges to non-edges. The proof involves recognising
the lines of the net as cliques in the strongly regular graph. Bruck’s result is ac-
tually more general (it extends to sets of mutually orthogonal Latin squares) and
was further generalised by Bose to ‘partial geometries’.

A strongly regular graph and its complement form an example of a two-class
association scheme. The notion of isomorphism of association scheme is more
general; in this case, an isomorphism from the graph to its complement is an
automorphism of the association scheme. However, counting arguments show
that such an isomorphism is possible only ifn = 5.

6 Orthogonal arrays and codes

A different way to describe a Latin square is to list alln2 triples (i, j,k), where
i, j andk are the row, column and symbol numbers associated with a cell of the
square. We can imagine these as written out in ann2×3 array. This array is

• anorthogonal arrayof strength 2 and index 1: given any pair of columns,
and any choice of two symbols, there is a unique row where those symbols
occur in those columns;

• a 1-error-detecting code: any two rows of the array differ in at least two
positions.
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It is clear that these two properties of ann2×3 array with entries from an alphabet
of sizen are equivalent, and an array with these properties arises from a Latin
square as described.

Two v× k arrays over an alphabetA are said to beequivalentif one can be
obtained from the other by a combination of the following operations:

• applying a permutationfi of A to the symbols in theith column, fori =
1, . . . ,k;

• applying a permutation to the columns;

• applying a permutation to the rows.

Warning: regarding a Latin square as ann×n array, the above definition is not the
same as any standard equivalence of Latin squares! This notion is particularly ap-
propriate for codes, since column permutations and permutations to the symbols
in each column independently generate all the isometries ofAn (where the met-
ric is Hamming distance, the distance between twon-tuples being the number of
positions where they differ.) It is clear that equivalence in this sense of the orthog-
onal arrays (or codes) constructed from Latin squaresL,L′ arises from main-class
equivalence ofL andL′, and only thus.

Finally, the rows of such an array are the positions ofn2 non-attacking rooks
on ann×n×n board, and conversely. (A rook is allowed to move along a ‘line’
of the board, keeping two coordinates constant.)

If we allow arbitrary permutations of the board which preserve the 3n ‘lines’,
then equivalence of such sets of rooks is the same as main class equivalence of
Latin squares. However, we may wish to consider a more restricted version of
equivalence (if, say, we are considering other kinds of chess pieces at the same
time), in which case the equivalence relation will be finer. The most extreme
position is not to allow any non-trivial equivalences at all, in which case each con-
figuration of rooks corresponds to a single Latin square. An intermediate position
might, for example, allow Euclidean symmetries of the board: here the equiva-
lence relation on Latin squares would be main class equivalence where each of
the three permutations involved in the isotopy is either the identity or the reversal
on{1, . . . ,n}.
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7 Edge-colourings

An edge-colouringof a graph is an assignment of ‘colours’ to the edges in such
a way that two edges sharing a vertex get different colours. It is clear that the
number of colours required cannot be smaller than the maximum valency of a
vertex. A consequence of Hall’s Marriage Theorem is that, if a graph is bipartite,
then this bound is attained. If the graph is regular with valencyr, then an edge-
colouring with r colours is the same as a 1-factorisation of the graph (provided
that the names of the colours are not significant).

Thecomplete bipartite graph Kn,n has 2n vertices partitioned into two setsR
andC each of sizen, such that every vertex ofR is joined to every vertex ofC
(and these are all the edges). LetR= {r1, . . . , rn} andC = {c1, . . . ,cn}. Suppose
that the edges are coloured with the setS= {s1, . . . ,sn} of colours. Then we may
form ann×n array in which the(i, j) entry isk if and only if the colour of the
edge{r i ,c j} is sk. This array is a Latin square. Reversing the construction, any
Latin square of ordern gives rise to an edge-colouring ofKn,n with n colours.

An isomorphismof edge-colourings of graphsG,G′ is a graph isomorphism
from G to G′ which maps each colour class inG to a colour class inG′. Now
two Latin squaresL andL′ give rise to isomorphic edge-coloured complete bipar-
tite graphs if and only ifL is isotopic to eitherL′ or its transpose(L′)(r,c). This
is because, in the edge-colouring situation, exchanging rows and columns corre-
sponds to a graph isomorphism, but symbols play a different role. So this relation
is coarser than isotopy but finer than main-class equivalence.

8 Sharply transitive permutation sets

A setSof permutations of{1, . . . ,n} issharply transitiveif, for any i, j ∈{1, . . . ,n},
there is a uniquef ∈ Swith f (i) = j.

If we identify a permutationf with its passive form( f (1), . . . , f (n)), we see
that a sharply transitive set is precisely the set of rows of a Latin square.

Two setsS,S′ of permutations are isomorphic ifS′ can be obtained fromSby
re-labelling the domain: that is, there is a permutationg of {1, . . . ,n} such that
S′ = {ghg−1 : h ∈ S}. The effect ofg on the corresponding Latin square is to
apply the permutationg simultaneously to the columns and the symbols: we have

h( j) = k⇔ (ghg−1)(g( j)) = g(k).

Note that the order of the rows of the square is unspecified. Thus isomorphism
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of permutation sets corresponds to a specialisation of isotopy of Latin squares:
we are allowed only isotopies of the form( f ,g,g) for permutationsf andg. This
relation is coarser than quasigroup isomorphism (which takesg= f ) but finer than
isotopy.

9 Complete Latin squares

A Latin square is said to berow-completeif each ordered pair of distinct symbols
occurs exactly once in consecutive positions in the same row. A Latin square is
said to berow-quasi-completeif each unordered pair of distinct symbols occurs
exactly twice in adjacent positions in the same row. Such squares are used in
experimental design where there is a spatial or temporal structure on the set of
experimental units.

Column-completenessandcolumn-quasi-completenessare defined analogously.
A Latin square iscompleteif it is both row-complete and column-complete, and
is quasi-completeif it is both row-quasi-complete and column quasi-complete.

For example, the first square below is complete, while the second is quasi-
complete.

1 2 6 3 5 4
2 3 1 4 6 5
6 1 5 2 4 3
3 4 2 5 1 6
5 6 4 1 3 2
4 5 3 6 2 1

1 2 3 4 5
5 3 1 2 4
3 4 2 5 1
4 1 5 3 2
2 5 4 1 3

In a row-complete or row-quasi-complete Latin square, row and symbol per-
mutations preserve the completeness property, but column permutations (except
for the identity and the left-to-right reversal) do not, in general. So the appropri-
ate concept of equivalence for these squares (regarding the completeness as part of
the structure) allows row and symbol permutations but only reversal of columns.
Similarly, for a complete or quasi-complete Latin square, we can permute the
symbols arbitrarily, but at most reverse rows and/or columns (and we may allow
transposition as well). This gives rise to several new notions of equivalence.
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10 Conclusion

The most natural equivalence relations associated with Latin squares (equality,
isotopy and main class equivalence) are not always the relevant ones for objects
‘equivalent’ to Latin squares. We have identified three others: isomorphism of
quasigroups, of edge-coloured complete bipartite graphs, and of sharply transitive
permutation sets (and potentially more, in configurations of non-attacking rooks
and in Latin squares with various completeness properties).

We conclude by pointing out that the definition of ‘isomorphism’ of Latin
squares in Chapter II.1 of theHandbook of Combinatorial Design[2] agrees with
quasigroup isomorphism, but the enumeration of isomorphism classes immedi-
ately following is not consistent with this (giving only one class forn = 3). The
moral is that care is required!

Finally, we remark that much of what is said above extends to sets of mutually
orthogonal Latin squares.
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