Groups

1 Definition

The idea of a group has evolved from a concrete measure of symmetry of a math-
ematical object to an abstract algebraic structure in its own right. The work of
Lagrange, Galois and others on groups was motivated by studying the symmetries
of the roots of a polynomial equation.

The symmetry of an object is specified by its structure-preserving mappings
and the manner in which they compose with one another. It is this notion of a set
with a composition which is the basis of the definition.

A binary operationon a setG (typically denoted by a symbol like) is a
function fromG x G to G. We write the value of the function on the pég; h) €
G x G (the result of ‘composingy andh) asgo h.

A groupis a setG with a binary operatior satisfying the following condi-
tions:

(G1) For allg,h,k € G, we havego (hok) = (goh) ok (theassociative lay
(G2) There is an elemestc G such thagoe=eog=gforallge G.
(G3) For anyg € G, there existg/ € G such thagog =g og==e.

If it satisfies the additional condition
(G4) For allg,h € G, we havego h = ho g (thecommutative layy

it is said to be a\belian group

The set of symmetries of a mathematical object (suitably defined) always has
the structure of a group, where the operation is composition. For the composition
of two symmetries is a symmetry; the identity map is a symmetry; a symmetry is
a one-to-one and onto map, and so has an inverse, which is also a symmetry; and
composition of maps is always associative.

Symmetry groups can be generalised as followspefmutation grougs a
setG of permutations (one-to-one and onto maps) of aethich is closed
under composition, contains the identity map, and contains the inverse of each
of its elements. (A permutation group is a group: the associative law is again
automatic.) Thus, each symmetry group is a permutation group. A lot of work
has gone into deciding which permutation groups are symmetry groups of objects
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of particular types such as graphs or designs. (Every permutation group is the
symmetry group of some suitably constructed object.)

Cayley’s Theorenshows that, conversely, every group can be represented as
a permutation group. The proof is as follows. (This argument is stated for finite
groups but works more generally.) L&t= {g1,0o,...,0n} be a group. Th€ay-
ley tableof G is then x n matrix with (i, j) entryk if gi ogj = gk. It follows from
the group axioms (G2) and (G3) that the Cayley table is a Latin square. Thus, each
row is a permutation of1,...,n}. Now it can be checked that, 1f; is the per-
mutation corresponding to thth row, thenr o 11; = T if and only if g o gj = ok.

(Here the operation on permutations is composition.) Thus the permutations form
a group identical t@s.

We say that a grouf with operationo and a grougH with operationx are
isomorphicif there is a one-to-one correspondence fr@Gno H so that, ifgs
corresponds tdn, andg to hy, thengs o g» corresponds td; « hy. Isomorphic
groups are ‘the same’ from an algebraic point of view, even though their elements
may be quite different. Thus, Cayley’s Theorem really states:

Theorem 1 Every group is isomorphic to a permutation group.

Theorder of a group is the number of elements in the group. It may be finite
or infinite, but we will be mainly concerned with finite groups.

Two very different examples of groups, one infinite and abelian, the other finite
and (almost always) non-abelian:

¢ the additive grouf of integers, with the operation of addition;

e thesymmetric group $of degreen; its elements are all permutations of the
set{1,...,n}, and the operation is composition of permutations.

2 Subgroups: Lagrange and Sylow

From now on we suppress explicit mention of the group operation, andgyge
instead ofg; o g>. This is especially appropriate when we think of the group
operation as ‘multiplication’. At the same time, we write the group identity as 1,
and the inverse aj asg—.

[Sometimes instead we think of it as ‘addition’, and wrgg+ g>. This is
especially common when the group is abelian. In this case, we write the identity
as 0, and the inverse gfas—g.]
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Let G be a group. Asubgroupof G is a non-empty subset which forms a group
in its own right, with respect to the operation inherited fr@nThat is,H must
satisfy the conditions

e forall hy,hy € H, we haveh; o hy € H (theclosure law- if this were not so,
we would not have a well-defined operationlair

¢ the identity ofG is contained irH;
e the inverse of each elementidfis in H.

In fact the second condition follows from the others, and all follow from the single
condition

o forall hy,hy € H, we havenyoh,* € H.

We writeH < G to denote thaH is a subgroup o.
LetH be a subgroup d&. The relation~,; on G defined by

X~y ifandonlyif xy'eH

is an equivalence relation dth. Its equivalence classes are calight cosetsof
H in G, and are sets of the form

Hx={hx:heH}.

The elemenk s called aright coset representativier the right coseH x.
Dually, the relation~; given by

X~y ifandonlyif xtyeH

is an equivalence relation, whose equivalence classes are ledlledsetof H in
G, and have the form
XH = {xh:heH}.

The left and right cosets of a given subgroup may give different partitions of the
group. But the number of elements in a coset of either type is equal to the number
of elements in the subgroup. (For right cosets, the correspondencéxis a
bijection betweerH andHx. So the number of cosets of either type (theéexof

H in G) is equal to|G|/|H|. We deducéd.agrange’s Theorem

Theorem 2 The order of a subgroup H of a finite group G divides the order of G.
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The converse of Lagrange’s Theorem is falséGif=n andmdividesn, there
may be no subgroup of ordenin G. One case where such a subgroup exists
is given bySylow’s Theorermone of the most important theorems in finite group
theory.

Theorem 3 Let G be a group of order & p?-b, where p is prime and p does not
divide b. Then

(a) G contains a subgroup of ordefp

(b) any two such subgroups P, Q are conjugate (that is, there exist& xvith
x~1Px= Q — this implies that P and Q are isomorphic);

(c) the number of subgroups of ordet ig congruent tdl mod p and divides b.

A subgroup whose order is the exact power of the prpwehich dividesG is
called aSylow p-subgroupf G.

3 Normal subgroups and homomorphisms

A subgroupH of G is said to be anormal subgrougf its left and right cosets
coincide, that is, ifHx = xH for all x € G. This can be expressed in various
equivalent ways, for examplél is a normal subgroup if and only if, for dile H
andx € G, we havex thx e H. (The elemenk~thxis called aconjugateof h.)

If H is a normal subgroup dB, then we can define an operation on the set
G/H of (left or right) cosets oH in G by the rule

HxoHy = H(xy).

(Of course it is necessary to show that the definition doesn’t depend on the choice
of coset representativesandy.) It can be shown that, with this operatica/H
is a group. This group is called tfi&ctor groupor quotient groupof G by H.
How do normal subgroups arise ‘in nature’?
A homomorphisnfirom a groupG to a groupH is a function@ : G — H with
the property that

6(9192) = 6(91)8(02)
forall g1,90 € G.
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Perhaps the most familiar example of a homomorphism is the function from
the additive groufZ. of integers to the grougs /nZ of integers modulm, for some
positive integen, which maps each integ&rto the congruence clagsmodn.

Another example is theign mapfrom the symmetric grouf, to the multi-
plicative group{+1, —1}, which maps each permutation to its sign. The sign of a
permutatiorg € S, is (—1)"~(9), wherec(g) is the number of cycles af.)

Thekernelof a homomorphisn® is the set

Ker(0) ={ge G:6(g) =14}

of elements ofc mapped to the identity element |@f. Theimageis, as usual, the
set

Im(6) = {6(g) : g€ G}
of elements oH to which some element @ is mapped. These are described by
thelsomorphism Theorem

Theorem 4 LetB be a homomorphism from G to H. Then
e Ker(0) is a normal subgroup of G;
e Im(0) is a subgroup of H;
e the factor group GKer(8) is isomorphic tdm(8).

Conversely, if H is a normal subgroup of G, then there is a ‘canonical’ homomor-
phism having H as its kernel and/& as its image.

Thus we may say simply ‘A normal subgroup is the kernel of a homomor-
phism.

4  Simple groups: Jordan—Hblder

A group G always has two trivial normal subgroups, the whole gr@uand the
identity {1}. Itis calledsimpleif it has no other normal subgroups, armmposite
otherwise.

An example of a simple group is thegclic group G of prime orderp, con-
sisting of elements fori =0,..., p— 1, with compositiorkxl = x*1 medp_ By
Lagrange’s Theorem, this group has no non-trivial subgroups at all!

If Gis composite, with a non-trivial normal subgrotl then we can often
reduce questions abo@ to questions about the smaller grodpsandG/H. If
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either of these is composite, we can continue the process. Eventually we reach a
series
{1} =G <G <+ <G =G

which cannot be further refined. Thus, foe 1,...,r, we have thaG;_; is a nor-
mal subgroup o5, andG; /G;_1 is simple. Such a series is called@mposition
seriesof G, and the simple groupS;/G;_ are thecomposition factorsWe are
only interested in the composition factors up to isomorphism; they form a multi-
set, since a given simple group may be isomorphiGittG;_1 for several values
of i.

The Jordan—Hblder Theorenstates:

Theorem 5 Any two composition series of a finite group G give rise to the same
multiset of composition factors.

In a sense, this reduces the study of finite groups to two parts:
e determine the finite simple groups;

e determine how a given multiset of finite simple groups can be ‘glued to-
gether’ as the composition factors of a finite group.

To indicate just how far we are from a solution of the second problem, here
are some computational results obtained recently by Besche, Eick and O’Brien.
The number of groups of order 2000 or less is3D,529,484. Of these, more
than 99% have order 1024 21°. However, for every group of ordef2 the list
of composition factors consists of a single group (the cyclic group of order 2)
with multiplicity 10. There is a sense in which the most complicated groups are
those of prime-power order; such a group has just one composition factor (cyclic
of prime order) with the appropriate multiplicity.

However, the first part of the problem has been solved as a result of a major
collaborative effort. We proceed to discuss this.

5 The Classification of Finite Simple Groups

The Classification of Finite Simple Groups, or CFSG for short, is probably the
largest collaborative mathematical achievement ever. The first proof, covering an
estimated 15000 pages in articles often not directly on CFSG at all, was announced
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in 1980. It was subsequently found to contain a major gap. The ‘revisionism’ pro-
gramme was then launched to produce a self-contained proof; this was completed
in the early 2000s. Work on a ‘third-generation’ proof is currently underway.

Even the detailed statement of the theorem cannot be given here. Essentially
the result is as follows.

Theorem 6 A finite simple group is of one of the following types:
(a) a cyclic group of prime order;
(b) an alternating group A for n > 5;
(c) a simple group of Lie type;
(d) one of26 sporadic simple groups.

We have already seen the cyclic groups of prime order. Here is a brief descrip-
tion of the remaining groups.

Thealternating group A consists of all even permutations of the §&t . ., n}.

We saw earlier that it is the kernel of the sign homomorphism from the symmetric
group$, to Cy, so it is a normal subgroup &;. Galois showed that, far> 5, the
alternating group®, is simple (so that the composition factors®fare A, and

C).

Groups of Lie type are harder to describe. They are closely related to certain
matrix groups over finite fields. They fall into a number of families,of which the
simplest consists of the projective special linear groups(R3f. = SL(n,q)/Z,
where SI(n, g) consists of all matrices of determinant 1, ahis the normal sub-
group consisting of scalar matrices. Further families correspond to other ‘classi-
cal’ groups (symplectic, orthogonal and unitary) over finite fields, and there are
some ‘exceptional’ families constructed from exceptional Lie algebras or auto-
morphisms of other groups. Carter’s book [3] gives details.

The 26 sporadic groups have no uniform definition, but were constructed in-
dividually. See the\TILAS [4] for detalils.

6 Permutation groups
Another essay in this series describes aspects of permutation groups of relevance

to design theory. Here we give some corollaries of CFSG for permutation groups.
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First, a brief reminder about terminology. germutation groupon the set
{1,...,n} is a subgroup of the symmetric gro&R (that is, a group whose ele-
ments are permutations and whose operation is composition). The nanshes
degree A permutation grous is

e transitiveif, for any two points of{ 1, ...,n}, there is an element & which
maps the first to the second;

e primitiveif, for any subseY of {1,...,n} satisfying 1< |Y| < n, there is an
elemeng € GwithY #g(Y) andY ng(Y) # 0;

o t-transitive(for 1 <t < n) if, given any twot-tuples of distinct points, there
is an element o6 which maps the first to the second.

Among the consequences of CFSG are the following:
¢ all finite t-transitive groups, for > 2, are known (see the lists in [2]);

o for almost all positive integens, the only primitive groups of degreeare
the symmetric and alternating groups;

e primitive groups have small order (with known exceptions);

o there are only finitely many distance-transitive graphs of given valency (greater
than 2).

Further details about many of these results appear in [2].

7 Computation

Most familiar programming languages and systems allow the user to handle in-
tegers, real numbers, and strings. Modern systems often extend this to vectors,
complex numbers, etc. To deal with groups as easily, there are two systems avail-
able:GAP [5] andMAGMA [1].

A permutation group often arises in practice as the automorphism group of
some structure (graph, design, etc.) The program of choice for testing isomor-
phism of graphs and other combinatorial objects, and for calculating their auto-
morphism groups, isauty [6]. The GAPshare packag&RAPE includes an
interface withnauty ; the automorphism groups of graphs returned by the latter
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can be handled directly iGAP. The forthcoming packageESIGN will extend
this functionality to designs.

In the remainder of this essay we sketch briefly how permutation groups are
handled in a computer.

A group is usually input to the computer by giving a set of permutations which
generate it. Now given a set of generators,dhat of a pointx (the set of all im-
ages ofx under elements oB) can be computed by an algorithm similar to that
for finding a connected component of a graph: starting wjtadd in any point
which is the image of an existing point under a generator until the resulting set
is closed under all generators. The procedure implicitly finds coset representa-
tives for the stabiliser ok: such a set consists of one element mappitg each
possible image.

Now Schreier's Lemmarovides an algorithm which, given generators for a
group and coset representatives for a subgroup, finds generators for the subgroup.
So we can compute generators for the subgi@ufixing x.

Continuing this process, we find a sequence

G=Gy>G1 > >Gyg={1}

of subgroups of5, whereG; is the stabiliser of pointgy, ..., x, for 1 <i <d. At
this point we can calculate the order@fand can test any permutation for mem-
bership inG. Moreover, an element @ is uniquely determined by the images of
X1,-..,Xd, SO arbitrary elements @ can be represented in more compact form.
Using this representation, the packages enable the user to compute any group-
theoretical properties of interest, including (but far from limited to) Sylow sub-
groups, composition factors, images of homomorphisms, etc.
It should be mentioned that groups can be handled in other ways too. Instead
of permutation generators, we may give matrix generators, or abstract generators
and defining relations.
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