
Groups

1 Definition

The idea of a group has evolved from a concrete measure of symmetry of a math-
ematical object to an abstract algebraic structure in its own right. The work of
Lagrange, Galois and others on groups was motivated by studying the symmetries
of the roots of a polynomial equation.

The symmetry of an object is specified by its structure-preserving mappings
and the manner in which they compose with one another. It is this notion of a set
with a composition which is the basis of the definition.

A binary operationon a setG (typically denoted by a symbol like◦) is a
function fromG×G to G. We write the value of the function on the pair(g,h) ∈
G×G (the result of ‘composing’g andh) asg◦h.

A group is a setG with a binary operation◦ satisfying the following condi-
tions:

(G1) For allg,h,k∈G, we haveg◦ (h◦k) = (g◦h)◦k (theassociative law).

(G2) There is an elemente∈G such thatg◦e= e◦g = g for all g∈G.

(G3) For anyg∈G, there existsg′ ∈G such thatg◦g′ = g′ ◦g = e.

If it satisfies the additional condition

(G4) For allg,h∈G, we haveg◦h = h◦g (thecommutative law),

it is said to be anAbelian group.
The set of symmetries of a mathematical object (suitably defined) always has

the structure of a group, where the operation is composition. For the composition
of two symmetries is a symmetry; the identity map is a symmetry; a symmetry is
a one-to-one and onto map, and so has an inverse, which is also a symmetry; and
composition of maps is always associative.

Symmetry groups can be generalised as follows. Apermutation groupis a
set G of permutations (one-to-one and onto maps) of a setΩ which is closed
under composition, contains the identity map, and contains the inverse of each
of its elements. (A permutation group is a group: the associative law is again
automatic.) Thus, each symmetry group is a permutation group. A lot of work
has gone into deciding which permutation groups are symmetry groups of objects
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of particular types such as graphs or designs. (Every permutation group is the
symmetry group of some suitably constructed object.)

Cayley’s Theoremshows that, conversely, every group can be represented as
a permutation group. The proof is as follows. (This argument is stated for finite
groups but works more generally.) LetG = {g1,g2, . . . ,gn} be a group. TheCay-
ley tableof G is then×n matrix with (i, j) entryk if gi ◦g j = gk. It follows from
the group axioms (G2) and (G3) that the Cayley table is a Latin square. Thus, each
row is a permutation of{1, . . . ,n}. Now it can be checked that, ifπi is the per-
mutation corresponding to theith row, thenπi ◦π j = πk if and only if gi ◦g j = gk.
(Here the operation on permutations is composition.) Thus the permutations form
a group identical toG.

We say that a groupG with operation◦ and a groupH with operation∗ are
isomorphicif there is a one-to-one correspondence fromG to H so that, ifg1

corresponds toh1 andg2 to h2, theng1 ◦ g2 corresponds toh1 ∗ h2. Isomorphic
groups are ‘the same’ from an algebraic point of view, even though their elements
may be quite different. Thus, Cayley’s Theorem really states:

Theorem 1 Every group is isomorphic to a permutation group.

Theorder of a group is the number of elements in the group. It may be finite
or infinite, but we will be mainly concerned with finite groups.

Two very different examples of groups, one infinite and abelian, the other finite
and (almost always) non-abelian:

• the additive groupZ of integers, with the operation of addition;

• thesymmetric group Sn of degreen; its elements are all permutations of the
set{1, . . . ,n}, and the operation is composition of permutations.

2 Subgroups: Lagrange and Sylow

From now on we suppress explicit mention of the group operation, and writeg1g2

instead ofg1 ◦ g2. This is especially appropriate when we think of the group
operation as ‘multiplication’. At the same time, we write the group identity as 1,
and the inverse ofg asg−1.

[Sometimes instead we think of it as ‘addition’, and writeg1 + g2. This is
especially common when the group is abelian. In this case, we write the identity
as 0, and the inverse ofg as−g.]

The Encyclopaedia of Design Theory Groups/2



Let G be a group. Asubgroupof G is a non-empty subset which forms a group
in its own right, with respect to the operation inherited fromG. That is,H must
satisfy the conditions

• for all h1,h2 ∈H, we haveh1◦h2 ∈H (theclosure law– if this were not so,
we would not have a well-defined operation onH);

• the identity ofG is contained inH;

• the inverse of each element ofH is in H.

In fact the second condition follows from the others, and all follow from the single
condition

• for all h1,h2 ∈ H, we haveh1◦h−1
2 ∈ H.

We writeH ≤G to denote thatH is a subgroup ofG.
Let H be a subgroup ofG. The relation∼r onG defined by

x∼r y if and only if xy−1 ∈ H

is an equivalence relation onH. Its equivalence classes are callerright cosetsof
H in G, and are sets of the form

Hx = {hx : h∈ H}.

The elementx is called aright coset representativefor the right cosetHx.
Dually, the relation∼l given by

x∼l y if and only if x−1y∈ H

is an equivalence relation, whose equivalence classes are calledleft cosetsof H in
G, and have the form

xH = {xh : h∈ H}.

The left and right cosets of a given subgroup may give different partitions of the
group. But the number of elements in a coset of either type is equal to the number
of elements in the subgroup. (For right cosets, the correspondenceh↔ hx is a
bijection betweenH andHx. So the number of cosets of either type (theindexof
H in G) is equal to|G|/|H|. We deduceLagrange’s Theorem:

Theorem 2 The order of a subgroup H of a finite group G divides the order of G.
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The converse of Lagrange’s Theorem is false; if|G|= n andmdividesn, there
may be no subgroup of orderm in G. One case where such a subgroup exists
is given bySylow’s Theorem, one of the most important theorems in finite group
theory.

Theorem 3 Let G be a group of order n= pa ·b, where p is prime and p does not
divide b. Then

(a) G contains a subgroup of order pa;

(b) any two such subgroups P, Q are conjugate (that is, there exists x∈ G with
x−1Px= Q – this implies that P and Q are isomorphic);

(c) the number of subgroups of order pa is congruent to1 modp and divides b.

A subgroup whose order is the exact power of the primep which dividesG is
called aSylow p-subgroupof G.

3 Normal subgroups and homomorphisms

A subgroupH of G is said to be anormal subgroupif its left and right cosets
coincide, that is, ifHx = xH for all x ∈ G. This can be expressed in various
equivalent ways, for example:H is a normal subgroup if and only if, for allh∈H
andx∈G, we havex−1hx∈ H. (The elementx−1hx is called aconjugateof h.)

If H is a normal subgroup ofG, then we can define an operation on the set
G/H of (left or right) cosets ofH in G by the rule

Hx◦Hy = H(xy).

(Of course it is necessary to show that the definition doesn’t depend on the choice
of coset representativesx andy.) It can be shown that, with this operation,G/H
is a group. This group is called thefactor groupor quotient groupof G by H.

How do normal subgroups arise ‘in nature’?
A homomorphismfrom a groupG to a groupH is a functionθ : G→ H with

the property that
θ(g1g2) = θ(g1)θ(g2)

for all g1,g2 ∈G.
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Perhaps the most familiar example of a homomorphism is the function from
the additive groupZ of integers to the groupZ/nZ of integers modulon, for some
positive integern, which maps each integerk to the congruence classk modn.

Another example is thesign mapfrom the symmetric groupSn to the multi-
plicative group{+1,−1}, which maps each permutation to its sign. The sign of a
permutationg∈ Sn is (−1)n−c(g), wherec(g) is the number of cycles ofg.)

Thekernelof a homomorphismθ is the set

Ker(θ) = {g∈G : θ(g) = 1H}

of elements ofG mapped to the identity element ofH. Theimageis, as usual, the
set

Im(θ) = {θ(g) : g∈G}
of elements ofH to which some element ofG is mapped. These are described by
theIsomorphism Theorem:

Theorem 4 Let θ be a homomorphism from G to H. Then

• Ker(θ) is a normal subgroup of G;

• Im(θ) is a subgroup of H;

• the factor group G/Ker(θ) is isomorphic toIm(θ).

Conversely, if H is a normal subgroup of G, then there is a ‘canonical’ homomor-
phism having H as its kernel and G/H as its image.

Thus we may say simply ‘A normal subgroup is the kernel of a homomor-
phism.’

4 Simple groups: Jordan–Ḧolder

A groupG always has two trivial normal subgroups, the whole groupG and the
identity{1}. It is calledsimpleif it has no other normal subgroups, andcomposite
otherwise.

An example of a simple group is thecyclic group Cp of prime orderp, con-
sisting of elementsxi for i = 0, . . . , p−1, with compositionxix j = xi+ j mod p. By
Lagrange’s Theorem, this group has no non-trivial subgroups at all!

If G is composite, with a non-trivial normal subgroupH, then we can often
reduce questions aboutG to questions about the smaller groupsH andG/H. If
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either of these is composite, we can continue the process. Eventually we reach a
series

{1}= G0≤G1≤ ·· · ≤Gr = G

which cannot be further refined. Thus, fori = 1, . . . , r, we have thatGi−1 is a nor-
mal subgroup ofGi , andGi/Gi−1 is simple. Such a series is called acomposition
seriesof G, and the simple groupsGi/Gi−1 are thecomposition factors. We are
only interested in the composition factors up to isomorphism; they form a multi-
set, since a given simple group may be isomorphic toGi/Gi−1 for several values
of i.

TheJordan–Ḧolder Theoremstates:

Theorem 5 Any two composition series of a finite group G give rise to the same
multiset of composition factors.

In a sense, this reduces the study of finite groups to two parts:

• determine the finite simple groups;

• determine how a given multiset of finite simple groups can be ‘glued to-
gether’ as the composition factors of a finite group.

To indicate just how far we are from a solution of the second problem, here
are some computational results obtained recently by Besche, Eick and O’Brien.
The number of groups of order 2000 or less is 49,910,529,484. Of these, more
than 99% have order 1024= 210. However, for every group of order 210, the list
of composition factors consists of a single group (the cyclic group of order 2)
with multiplicity 10. There is a sense in which the most complicated groups are
those of prime-power order; such a group has just one composition factor (cyclic
of prime order) with the appropriate multiplicity.

However, the first part of the problem has been solved as a result of a major
collaborative effort. We proceed to discuss this.

5 The Classification of Finite Simple Groups

The Classification of Finite Simple Groups, or CFSG for short, is probably the
largest collaborative mathematical achievement ever. The first proof, covering an
estimated 15000 pages in articles often not directly on CFSG at all, was announced
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in 1980. It was subsequently found to contain a major gap. The ‘revisionism’ pro-
gramme was then launched to produce a self-contained proof; this was completed
in the early 2000s. Work on a ‘third-generation’ proof is currently underway.

Even the detailed statement of the theorem cannot be given here. Essentially
the result is as follows.

Theorem 6 A finite simple group is of one of the following types:

(a) a cyclic group of prime order;

(b) an alternating group An, for n≥ 5;

(c) a simple group of Lie type;

(d) one of26sporadic simple groups.

We have already seen the cyclic groups of prime order. Here is a brief descrip-
tion of the remaining groups.

Thealternating group An consists of all even permutations of the set{1, . . . ,n}.
We saw earlier that it is the kernel of the sign homomorphism from the symmetric
groupSn toC2, so it is a normal subgroup ofSn. Galois showed that, forn≥ 5, the
alternating groupAn is simple (so that the composition factors ofSn areAn and
C2).

Groups of Lie type are harder to describe. They are closely related to certain
matrix groups over finite fields. They fall into a number of families,of which the
simplest consists of the projective special linear groups PSL(n,q) = SL(n,q)/Z,
where SL(n,q) consists of all matrices of determinant 1, andZ is the normal sub-
group consisting of scalar matrices. Further families correspond to other ‘classi-
cal’ groups (symplectic, orthogonal and unitary) over finite fields, and there are
some ‘exceptional’ families constructed from exceptional Lie algebras or auto-
morphisms of other groups. Carter’s book [3] gives details.

The 26 sporadic groups have no uniform definition, but were constructed in-
dividually. See theATLAS [4] for details.

6 Permutation groups

Another essay in this series describes aspects of permutation groups of relevance
to design theory. Here we give some corollaries of CFSG for permutation groups.
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First, a brief reminder about terminology. Apermutation groupon the set
{1, . . . ,n} is a subgroup of the symmetric groupSn (that is, a group whose ele-
ments are permutations and whose operation is composition). The numbern is its
degree. A permutation groupG is

• transitiveif, for any two points of{1, . . . ,n}, there is an element ofG which
maps the first to the second;

• primitive if, for any subsetY of {1, . . . ,n} satisfying 1< |Y|< n, there is an
elementg∈G with Y 6= g(Y) andY∩g(Y) 6= /0;

• t-transitive(for 1≤ t ≤ n) if, given any twot-tuples of distinct points, there
is an element ofG which maps the first to the second.

Among the consequences of CFSG are the following:

• all finite t-transitive groups, fort ≥ 2, are known (see the lists in [2]);

• for almost all positive integersn, the only primitive groups of degreen are
the symmetric and alternating groups;

• primitive groups have small order (with known exceptions);

• there are only finitely many distance-transitive graphs of given valency (greater
than 2).

Further details about many of these results appear in [2].

7 Computation

Most familiar programming languages and systems allow the user to handle in-
tegers, real numbers, and strings. Modern systems often extend this to vectors,
complex numbers, etc. To deal with groups as easily, there are two systems avail-
able:GAP [5] andMAGMA [1].

A permutation group often arises in practice as the automorphism group of
some structure (graph, design, etc.) The program of choice for testing isomor-
phism of graphs and other combinatorial objects, and for calculating their auto-
morphism groups, isnauty [6]. The GAPshare packageGRAPE includes an
interface withnauty ; the automorphism groups of graphs returned by the latter
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can be handled directly inGAP. The forthcoming packageDESIGN will extend
this functionality to designs.

In the remainder of this essay we sketch briefly how permutation groups are
handled in a computer.

A group is usually input to the computer by giving a set of permutations which
generate it. Now given a set of generators, theorbit of a pointx (the set of all im-
ages ofx under elements ofG) can be computed by an algorithm similar to that
for finding a connected component of a graph: starting withx, add in any point
which is the image of an existing point under a generator until the resulting set
is closed under all generators. The procedure implicitly finds coset representa-
tives for the stabiliser ofx: such a set consists of one element mappingx to each
possible image.

Now Schreier’s Lemmaprovides an algorithm which, given generators for a
group and coset representatives for a subgroup, finds generators for the subgroup.
So we can compute generators for the subgroupG1 fixing x.

Continuing this process, we find a sequence

G = G0 >G1 > · · ·>Gd = {1}

of subgroups ofG, whereGi is the stabiliser of pointsx1, . . . ,xi , for 1≤ i ≤ d. At
this point we can calculate the order ofG and can test any permutation for mem-
bership inG. Moreover, an element ofG is uniquely determined by the images of
x1, . . . ,xd, so arbitrary elements ofG can be represented in more compact form.

Using this representation, the packages enable the user to compute any group-
theoretical properties of interest, including (but far from limited to) Sylow sub-
groups, composition factors, images of homomorphisms, etc.

It should be mentioned that groups can be handled in other ways too. Instead
of permutation generators, we may give matrix generators, or abstract generators
and defining relations.
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