Estimation and variance in block designs

1 Background

Assume that we have a finite Stof plots, partitioned into blocks. WritB(w)
for the block containing ploto. There is also a seT of treatments. The de-
sign consists of an allocation of one treatment to each plot. Wite) for the
treatment allocated to plob.

Let n be the number of plotd the number of blocks and the number of
treatments. The incidence of plots in blocks can be recorded loyxam matrix
Xg whose(w, m) entry is equal to 1 iB(w) = m and equal to zero otherwise.
The allocation of plots to treatments is shown in an analogoyus matrix Xr.
Thev x v matrix X; XgXg Xt is called theconcurrencematrix A of the design: its
(i, j)-entry Ajj is equal to the number of ordered pairs of plaisw) for which
(i) a andw are in the same block (ii) (a) =i and (i) T(w) = j. If the design
is binary then\;i is equal to theeplication of treatment: that is, the number of
plots which are allocated treatmeantAlso, if the design is binary then, for |,
the concurrenca;; is equal to the number of blocks in which treatmenasd |
both appear.

2 Statistical model

The experimenter measures a respoYis®n each plotw, hence a vectoY in
R®. We assume that thé, are real random variables satisfying the following two
conditions.

(1) There are (unknown) constantsforiin 7, andpBm, form=1,...,b, such
that if T (w) = i andB(w) = mthen

E(Yw) = Tj + Bm.

(2) TheY, are independent, each having variam@e(which is also probably
unknown).

We want to estimate the treatment parametgrshe block parameters are
merely a nuisance.

Note that we could add a constant to eaghand subtract it from eacfin,
without changing the model for expectation, so we cannot in fact estimate the
treatment parameters. The best we can hope to do is to estimate all the differences
Tj — Tj and, more generally, linear combinations of the fgffp xt; for known
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real numbersg satisfying S+ % = 0. Such a linear combination is called a
contrast The word ‘contrast’ is also used for a veckin R” for which Sier X =
0.

3 Connectedness

Leti andj be distinct treatments. Suppose that there are plaisdw in blockm
such thafl (a) =i andT () = j. Then

so we can estimatg —1j. If | is a further treatment and there is a blatk
containing bothj and! then we can estimatg; — 1. Hence we can estimate
T —T.

The Levi graphof the block design has the treatments and the blocks as ver-
tices. Each plot gives an edge of the graph: pbajives an edge front (w) to
B(w). The above argument shows that we can estimater; whenever there is
a path fromi to j in the Levi graph. Thus all contrasts are estimable if the Levi
graph is connected. In this case the design is also cetledected

4 Estimation

The model for expectation can be written in matrix form as
E(Y) = X71+ XgP.

Let Q be then x n matrix which gives orthogonal projection onto the orthogonal
complement of the column spaceX. ThusQXg =0, @ = QandQ? = Q. It
can be shown that
Q=1—XgK *Xg,
whereK is the diagonal matrix whose entries are the block sizes.
Theinformation matrix Lof the design is defined by

L = X QXr.

Note that the row sums df are all zero, so that the all-1 vector RY is in the
kernel ofL. MoreoverlLx is a contrast i is. The design is connected if and only
if the column space df contains all contrasts.

The information matrix can often be simplified. If all blocks have $izleen

Q=1 XX
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and so L
L =X X7 — A

The matrixXs X7 is diagonal: if the design is binary then its entries are the repli-
cations of the treatments. In particular, if every treatment has replicatioem

1
L=rly— EA'

Suppose thatandzare contrasts withz= x. Consider the linear combination
ZX1QY of the responses. Expectation is linear, so

E(ZX1QY) = ZXQE(Y) =ZX QX1 =ZL1=X1= > XTi;
ieT

in other words, this linear combination is anbiasedestimator ofy ;. XTj in the
sense that the expectation is equal to the value which we are trying to estimate.

The following theorem, known as the Gauss—Markov theorem, is one of the
most important results from the theory of linear models.

Theorem 1 Under the assumptions in Section 2, the above estimatorfdras
minimum variance among linear unbiased estimators.

5 Variance

What is this minimum variance? The assumptions about independence and vari-
ance in Section 2 imply that

Var(ZX:QY) = (ZX%rQ)(ZXrQ)c?
= ZXQQXrz0?
= ZX;QXrz0?
ZLzo°.

We would really prefer to express this variance in termg.dVe can do this
by using thegeneralized inversef L.
SincelL is symmetric, it has a spectral decomposition

L=> uE;

where they; are the eigenvalues afand the matriceg; are the orthogonal pro-
jectors onto the corresponding eigenspaces. Then the generalized inverkke

is defined by
L = z 1Ei.
7o M
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(Such a generalized inverse can be defined for any real symmetric matrix. If the
matrix is invertible then the generalized inverse coincides with the inverse.)

We already know thak has an eigenvalue zero, &0 is not a true inverse
of L. However,

_ _ the identity on the column space lof
LL-=LL=
zero on the kernel df

and so we may tredt™ as a true inverse if we are dealing with a vectaf the
form Lz. Hence the above varianeé.zo? is equal tax'L ~xo?.
(Note that if the design is connected then

LL-=L"L=I —}J,
\'

wherel is the all-1 matrix.)
For the elementary contragt— 1, we havex;, = 1,x; = —1andx =0 if | £
andl # j, so the variance is equal to

T PR

Theorem 2 If design is connected and the information matrix has exactly two
non-zero eigenvalues then there are positive constanend ¢ such that the
variance of the estimator af — t; is equal to ¢ — CoAij.

Usually there is no such simple relationship between concurrence and vari-
ance.

6 Efficiency

We want the variances of estimators to be as small as possible. For reference, we
compare our block design with a complete-block design using the same number
of plots. This makes sense if our block design has equal replication. Then the
complete-block design h&s= v andb =r, so its concurrence matrix i§ and its
information matrix is

1
L =r(l —=J).
cep = I( y )

If X is a contrast thelhcgpx = rx and so the variance of the estimatondf is

equal to
XX 5

TGCBD7

Wherecr(z:BD is the variance of each response in the hypothetical complete-block
design.
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The relativeefficiencyfor contrastx't in our block design is defined to be the
ratio of the variances in the two designs, which is

XX ~2
& OCBD
X'L—x0?

Thus low variance in our block design corresponds to high efficiency.
In practice, neitheo? nor 63g, is known, so we define thefficiency factor
for the contrask’t to be
X'X
rx'L—x
It can be shown that all efficiency factors lie between O and 1. The value zero is
conventionally given iL.x = 0, which happens only if the design is disconnected.

Theorem 3 For a binary balanced block design, every efficiency factor is equal

to
v k—1

v—1 Kk

In the equireplicate case, efficiency factors have a particularly simple form for
eigenvectors of. If Lx=rexthenL=x = (re) 1xand so

X'X .
rx'L—x

In this caseg is called acanonical efficiency factor

Counting according to multiplicities, there are- 1 canonical efficiency fac-
tors. Their harmonic mean is denot@d The following theorem shows why this
is important.

Theorem 4 In a connected equireplicate block design, the average of the vari-
ances of the estimators of elementary contrasts is equal to

20°
rA -

The proofs of Theorems 3 and 4 are given in [1].

7 Optimality

A binary equireplicate block design with equal block sizes is said t&-bptimal
if it maximizes the value of over all binary designs with the same values ds,
r andk.

The Encyclopaedia of Design Theory Estimation and variance in block designs/5



Theorem 5 The following block designs are A-optimal:
(a) balanced designs;
(b) duals of A-optimal designs;
(c) square lattice designs;

(d) group divisible designs in which the concurrence between pairs in different
groups is one more than the concurrence between pairs in the same group,
and either

(i) there are two groups, or
(i) each block contains equal numbers of treatments from each group.

See [2] for more about optimality.
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