
Chamber systems and buildings

1 Incidence geometry

Incidence geometry, in its most general sense, involves a number of different types
of geometric objects, with a binary relation of ‘incidence’ which may hold be-
tween objects of different types. The objects may be points, lines, conics, etc.; the
usual term for them is ‘varieties’ (borrowed from algebraic geometry). The most
common situation is where there are just two types, though the more general case
was considered by Moore in 1896.

Formally, an incidence geometry consists of a setV of varieties, a finite setI of
types, a type mapτ : V→ I , and a symmetric incidence relation∗ onV, satisfying
the following axiom:

(IG1) Forv,v′ ∈V, we haveτ(v) = τ(v′) andv∗v′ if and only if v = v′.

In other words, a variety is incident with itself (this is just a convenient convention)
and with no other variety of the same type. We denote byVi the set of varieties of
type i, for i ∈ I . The incidence relation∗ can be regarded as adjacency in a graph,
which is multipartite with partsVi (for i ∈ I ), together with a loop at each vertex.
Therank of a geometry is the number of types.

We have assumed that the rank is finite. This assumption can be relaxed; but,
as we will see, induction on the rank is one of the most powerful weapons in a
geometer’s arsenal.

A geometry of rank 2 is what is often referred to as anincidence structure.
Combinatorialists often refer to the two types of varieties in an incidence structure
aspointsandblocks, and (where possible) like to identify a block with the set
of points incident to it. However, from our point of view, a rank 2 geometry
is a bipartite graph. This graph is often called theLevi graphof the incidence
structure, after Levi in 1929.

Sometimes it is possible to change our point of view of an incidence geometry
to be closer to that just described in the rank 2 case. Let 0 be a distinguished type.
We take the elements of the setV0 aspoints. Now theshadowSh(v) of a varietyv
is the set of all points incident withv. If the geometry has the additional property
that distinct varieties have distinct shadows, then we can identify all varieties with
sets of points. However, description of incidence in terms of the intersections
of shadows is not straightforward, except in special cases. (In projective spaces,
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which we discuss below, two varieties are incident if and only if the shadow of one
contains the shadow of the other; that is, incidence is ‘symmetrised inclusion’.)

Further axioms are generally assumed; these are now fairly standard although
this has not always been true. These axioms concern maximal flags and connect-
edness. As explained in the Introduction, we do not assume these axioms without
saying so explicitly.

A flag is a set of mutually incident varieties. Note that the type map restricted
to a flag is one-to-one, according to our axioms. Thetypeτ(F) of a flagF is the
set of types of its varieties, that is, the image ofF under the type map. Itscotype
is I \ τ(F). Therank of a flag is its cardinality (or, as is the same, the cardinality
of its type), and itscorankis the cardinality of its cotype.

We make the following assumptions.

(IG2) A maximal flag contains one variety of each type; that is, the type map
restricted to a maximal flag is a bijection.

(IG3) A flag of corank 1 is contained in at least two maximal flags.

Condition (IG2) is called thetransversality condition, since it asserts that any
maximal flag is a transversal to the partition ofV induced by the type function.

Sometimes condition (IG3) is relaxed, in which case we call a geometryfirm
if it holds. Moreover, a geometry is calledthin if (IG3) holds with ‘exactly two’
in place of ‘at least two’, andthick if (IG3) holds with ‘at least three’ in place of
‘at least two’.

Example A cycle consisting of 2n vertices and 2n edges is bipartite, and so is
a thin rank 2 incidence structure. Somewhat confusingly, it is ann-gon(that is,
its varieties are the vertices and edges of an ordinaryn-gon, and incidence is the
usual geometric notion). Figure 1 shows a 4-gon in its usual representation and
as a geometry (a Levi graph). In the second diagram, the two types are shown as
dots of different sizes. Loops have been omitted.

Example A polyhedron in Euclidean 3-space defines an incidence structure with
three types of varieties: vertices, edges and faces.

Let F be a non-maximal flag. Theresidueof F , denoted byR(F), is the
subgeometry consisting of all the varietiesv satisfyingv∗w for all w ∈ F but
v /∈ F . It is a geometry whose type is the cotype ofF (and whose rank is the
corank ofF). If (IG2) and/or (IG3) holds in the whole geometry, then it holds in
the residue of each flag.
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Figure 1: A 4-gon

This construction allows the possibility of induction on the rank of the geom-
etry, both for proofs and for definitions.

A geometryG is connectedif the graph onV defined by the incidence relation
is connected. We say thatG is residually connectedif, for any flagF with corank
at least 2, the residue ofF is connected. (Of course, if (IG3) holds, then the residue
of a flag of corank 1 is never connected.) For rank 2 geometries, connectedness
and residual connectedness are the same condition. Now the connectedness axiom
which is usually assumed is the following.

(IG4) The geometry is residually connected.

We now turn to the construction of geometries from groups. Anautomorphism
of a geometry is a permutation of the setV of varieties which preserves both the
type function and the incidence relation; that is, every variety is mapped to one of
the same type, and incident pairs of varieties are mapped to incident pairs. This is
sometimes called astrong automorphism, in contrast with aweak automorphism,
which is also allowed to permute the types. (Thus, a weak automorphism can be
described as a pair(g,γ), whereg is a permutation ofV andγ a permutation ofI ,
satisfyingτ(vg) = τ(v)γ for all v∈V and also(v∗ v′)⇒ (vg∗ v′g). Thus a weak
automorphism is strong if and only ifγ is the identity permutation.) We consider
only strong automorphisms, and refer to them just as automorphisms.

Any automorphism carries a maximal flag to another maximal flag. A group
G of automorphisms of the geometry is said to actflag-transitivelyif any maximal
flag can be mapped to any other by some automorphism inG.
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The case where the geometry most closely reflects the structure of the group
occurs when the group is flag-transitive. In this case, we can describe the geometry
within the group, as follows.

Let G be a flag-transitive group of automorphisms of a geometryG . Let F
be a maximal flag ofG , and letvi be the unique variety of typei in F andHi the
stabiliser ofvi in G, for all i ∈ I . Now, sinceG acts transitively onVi , we can
identify the varieties of typei with the right cosets ofHi in G: the varietyvig
corresponds to the cosetHig.

We claim:

Two varieties are incident if and only if the corresponding cosets have
non-empty intersection.

For suppose first thatHigi∩H jg j 6= /0. If g belongs to this intersection, thenHigi =
Hig andH jg j = H jg. Now the varietiesHig andH jg are the images ofHi andH j

under the automorphismg; sinceHi = vi andH j = v j are incident, so areHig and
H jg.

Conversely, suppose thatHigi andH jg j are incident. By flag-transitivity, there
is an automorphismg carryingHi andH j to Higi andH jg j ; sog∈ Higi ∩H jg j .

Now we can reverse this procedure: given a groupG and subgroupsHi for
i ∈ I , we can define a geometry whose varieties are the cosets of these subgroups,
with the obvious type map and with two varieties incident if they have non-empty
intersection. We call this acoset geometryG(G;(Hi : i ∈ I)). Clearly (IG1) and
(IG2) hold, andG acts by right multiplication as a group of automorphisms of
the geometry. We investigate what group-theoretic conditions guarantee the other
axioms.

Let B =
⋂

i∈I Hi , and fori ∈ I , let Pi =
⋂

j∈I\{i}H j . ThenB is the stabiliser of
our standard maximal flagF , and (by flag-transitivity) the stabiliser of any other
maximal flag is a conjugate ofB. Moreover,Pi is the stabiliser of the sub-flag of
F of cotype{i}. Then the varieties of typei incident withF \{vi} are the cosets
of Hi contained inHiPi ; so

(IG3) holds if and only ifPi is not contained inHi .

To investigate residual connectedness, we first note that the coset geometry
G(G;(Hi : i ∈ I)) is connected if and only if the subgroupsHi (for i ∈ I ) gener-
ateG. Now the residue ofHi in the coset geometryG(G,(Hi : i ∈ I)) is the coset
geometryG(Hi ,(Hi ∩H j : j ∈ I \{i})). For the residue ofHi consists of all cosets
H jh with h ∈ Hi and j 6= i. Now H jh = H jh′ if and only if h′h−1 ∈ Hi ∩H j ; so
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the varieties of typej correspond to cosets ofHi ∩H j in Hi . Two varieties of this
residue are incident if and only if they have the formH jh andHkh for someh∈Hi .

So finally:

Theorem 1 The coset geometryG(G,(Hi : i ∈ I)) is residually connected if and
only if, for every subset J of I with|I \J| ≥ 2, we have

⋂
i∈J

Hi =

〈 ⋂
i∈J∪{ j}

Hi : j ∈ I \J

〉
.

This is not an easy condition to check!

2 Diagrams

The recent revival of interest in incidence geometry with several types has grown
from the work of Buekenhout [2] on diagram geometries. Buekenhout gave a
simple pictorial method of describing natural axiomatic classes of geometries as
follows.

Let I be a finite set. Adiagram∆ overI consists of a set∆i j of geometries for
eachi, j ∈ I with i 6= j. Each geometry in∆i j has two types of vertices, which we
will call ‘points’ and ‘blocks’. It is customary to assume that the geometries in
∆ ji are the duals of those in∆i j , in the sense that they are the same geometries but
the attachment of the labels ‘point’ and ‘block’ to the types is reversed.

Diagrams can be represented pictorially. Each class∆i j is represented by a
label on the edge joiningi to j in the complete graph on the setI . We take the
symbol describing∆ ji to be the typographic reverse of that describing∆i j .

Now letG be a geometry with type setI . We say thatG belongs to the diagram
∆ if, for any flagF of cotype{i, j}, the residue ofF is isomorphic to a geometry
in ∆i j , where the isomorphism carries ‘points’ and ‘blocks’ to varieties of typesi
and j respectively. (This explains why we assume the duality condition above.)

Thus, any diagram gives an axiomatic definition of a class of geometries.
As an example, we discuss projective geometry in some detail. First we define

the classes of geometries in our diagrams. First, adigon is an incidence structure
in which every point is incident with every block. We represent the class of digons
by theabsenceof an edge in the diagram. Next, aprojective planeis an incidence
structure in which every two points are incident with a unique block, and any two
blocks with a unique point, but no point is incident with every block and no block
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is incident with every point. This is represented by a single edge without a label.
(Note that both these classes are self-dual, and the symbols used for them are the
same when reversed.) Recall that a digon or projective plane isthick if every point
is incident with at least three blocks and dually.

The projective spaceof dimensionn over a division ringD is the geometry
whose varieties are all the vector subspaces of the vector spaceDn−1 except for
{0} andDn−1. The type of a subspace is one less than its dimension (as a vector
space), and two subspacesV,V ′ are incident ifV ⊆ V ′ or V ′ ⊆ V. The type set
is I = {0,1,2, . . . ,n− 1}. We claim that ann-dimensional projective space is
represented by the diagram in Figure 2.

r r r r. . .0 1 2 n−1

Figure 2: The diagramAn

To verify this claim, we must calculate the rank 2 residues. Take a flagF
containing a subspaceVk of each typek∈ I excepti and j, where we may suppose
that i < j. There are two cases:

• j > i +1. In this case, the varieties of typei are all the subspacesU of type
i satisfyingVi−1⊆U ⊆Vi+1, and those of typej are all the subspacesW of
type j satisfyingVj−1⊆W ⊆Vj+1. For any suchU andW, we have

U ⊆Vi+1⊆Vj−1⊆W,

soU andW are incident; the residue is a digon.

• j = i + 1. Then the varieties of typesi andi + 1 are all those subspaces of
these types satisfying

Vi−1⊆U,W ⊆Vi+2;

these correspond to the 1- and 2-dimensional subspaces of the 3-dimen-
sional quotient spaceVi+2/Vi−1. Elementary linear algebra shows that this
residue is a projective plane.

In fact, the converse holds too. A thick geometry belonging to the diagram
An above forn≥ 3 is a projective space over a division ring. This follows from
Hilbert’s coordinatisation theorem. This example illustrates how compact the ax-
ioms for projective geometry become in this framework.
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The convention that digons are represented by the absence of an edge in the
diagram helps us to read off properties of the geometry from its diagram. Here are
a couple of simple examples.

Theorem 2 (a) If the diagram of a geometry is disconnected, and two varieties
have types in different components, then they are incident.

(b) Suppose that0, i, j are types such that the removal of i from the diagram
leaves0 and j in different components. Take varieties of type0 as points.
Let v and w be incident varieties of types i and j respectively. ThenSh(v)⊆
Sh(w).

For further details on diagram geometry, see Pasini [4].

3 Chamber systems

Let P (Ω) denote the set of all equivalence relations on the setΩ (or, what amounts
to the same thing, the set of all partitions ofΩ). There is a natural partial order
on Ω, which can be defined most simply as the relation of inclusion on the equiv-
alence relations. (We regard an equivalence relation as a set of ordered pairs.) In
terms of partitions, the order is given by the rule thatP1 ≤ P2 if P1 refines P2, in
the sense that every part ofP1 is contained in a part ofP2. This partial order is a
lattice order: the meet of two equivalence relations is just their intersection. The
join is more difficult to define. IfΠ is a set of equivalence relations, theΠ-graph
is the graph with vertex setΩ, in which two vertices are adjacent if and only if
they are equivalent with respect to some relationπ ∈ Π. Then the join ofπ and
ρ is the relation whose equivalence classes are the connected components of the
{π,ρ}-graph. This lattice is thelattice of partitionsof Ω. (To simplify notation
later, if a set of equivalence relations is indexed, we speak of theI -graph rather
than the{ρi : i ∈ I}-graph.)

Now achamber systemof typeI onΩ is simply a family(ρi : i ∈ I) of equiva-
lence relations onΩ. The elements ofΩ are calledchambers. We say that cham-
bersα andβ arei-equivalentif (α,β) ∈ ρi ; sometimes we write this asα∼i β.

We normally impose two conditions which lose no generality. First, we as-
sume that, ifi, j ∈ I with i 6= j, and α and β are chambers which are bothi-
equivalent andj-equivalent, thenα = β. Second, we assume that theI -graph is
connected. If this is not so, then we can treat each connected component sepa-
rately. In terms of the partition lattice, we are assuming that the meet of any two
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of our relations is equality while the join of all of them is the ‘universal’ relation
Ω×Ω.

Now let J be a subset ofI . We define aresidueof type J to be a connected
component of theJ-graph.

The link with incidence geometries works as follows. LetG be a geometry
satisfying (IG1) and (IG2), with type setI . TakeΩ to be the set of maximal flags
of G . For eachi ∈ I we define an equivalence relationρi which holds between
maximal flagsF andF ′ if and only if the varieties of typej in F andF ′ are the
same for allj 6= i. (There is no great loss in assuming (IG2) here since a maximal
flag which is not transversal will be invisible from the chamber system viewpoint.)

It is clear that the intersection of two of these equivalence relations is the
relation of equality, but their supremum is not determined. We call the geometry
chamber-connectedif the chamber system is connected. How is this notion related
to other kinds of connectedness?

Theorem 3 Let G be a geometry satisfying (IG1) and (IG2).

(a) If G is residually connected, then it is chamber-connected.

(b) If G is chamber-connected, then it is connected.

(c) Neither of these implications reverses.

Note that, for a rank 2 geometry, the three types of connectedness in Proposi-
tion 3 coincide. The geometry is a bipartite graph (the Levi graph of the incidence
structure), whose edges are the maximal flags; so its line graph is the chamber
graph of the geometry.

Let G be a geometry with type setI , and letC be the corresponding chamber
system. For any subsetJ of I , we have two notions of residue inC : a connected
component of theJ-graph, and the set of chambers in the residue of a flagF of
cotypeG (that is, the set of maximal flags extendingF). We call thesechamber-
residuesand geometric residuesrespectively. Since edges in theJ-graph join
maximal flags agreeing outsideJ, a chamber-residue is contained in a geometric
residue. Proposition 3(a) shows that, ifG is residually connected, the two notions
coincide.

This shows that, if a chamber system comes from a residually connected ge-
ometry, then we can recover the geometry as follows: the varieties of typei are
the chamber-residues of cotypei, and two varieties are incident if they have non-
empty intersection. This construction gives the ‘most highly connected’ geometry
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for a given chamber system. In particular, it is sometimes possible to start with a
geometry which is not residually connected and produce one which is.

Not every chamber system comes from a geometry. A familiar class of exam-
ples consists of Latin squares. ALatin squareof ordern may be defined as an
n×n array with entries from{1, . . . ,n} with the property that each symbol occurs
exactly once in each row or column. Now letΩ be the set ofn2 cells of the array,
and define three equivalence relations as follows:

• (α,β) ∈ ρ if α andβ lie in the same row;

• (α,β) ∈ γ if α andβ lie in the same column;

• (α,β) ∈ σ if α andβ contain the same symbol.

Now each rank 2 residue contains all the cells, and has the structure of ann×n
grid. So the attempted construction of a geometry would yield a single variety of
each type.

Chamber systems can be constructed from groups. The construction is in some
respects simpler than the construction of geometries; it works ‘from the bottom
up’, rather than ‘from the top down’. LetG be a group,B a subgroup ofG, and
(Pi : i ∈ I) a family of subgroups each containingB, such thatPi∩Pj = B for i 6= j.
We takeΩ to be the set of right cosets ofB, and, for i ∈ I , two cosets satisfy
relationρi if they lie in the same coset ofPi . This defines a chamber system, on
which G acts by right multiplication as a group of automorphisms (preserving all
the equivalence relations). It is straightforward to show that, for anyJ ⊆ I , the
residues of typeJ correspond to right cosets of the subgroup

PJ = 〈Pi : i ∈ J〉;

more precisely, a residue is the set of cosets ofB in a fixed coset ofPJ. The
chamber stabiliserB is called theBorel subgroupof G, and the subgroupsPJ are
theparabolic subgroups.

We can associate diagrams with chamber systems in much the same way as
for incidence geometries. Let∆i j be a class of rank 2 chamber systems for all
distinct i, j ∈ I , where the types in∆i j are ‘points’ and ‘blocks’ and these labels in
∆ ji are assigned in the other sense. Then a chamber system belongs to the diagram
∆ if its residues of type{i, j} belong to∆i j . For example, in the chamber system
constructed from a Latin square, any rank 2 residue is an×n grid; so the chamber
system has a diagram which is a triangle with each edge labelled ‘square grid’.
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(Note that a square grid is the chamber system of a generalised digon with equal
numbers of varieties of each type.)

This is particularly useful in the case of groups. Theamalgam method(see
[6]) studies groups generated by known subgroupsPi for i ∈ I , which intersect
pairwise in a fixed subgroupB. The diagram of the chamber system tells us about
the subgroups ofG generated by the pairs{Pi ,Pj}. From this, the aim is to get
information aboutG. The methods are technical, and we do not discuss them in
detail here.

4 Coxeter groups and buildings

A particularly important class of examples arises fromCoxeter groups. A Coxeter
group is a group defined by a presentation of the form

G = 〈xi (i ∈ I) : x2
i = 1 (i ∈ I), (xix j)mi j = 1 (i, j ∈ I , i 6= j)〉, (1)

where themi j are integers (at least 2) or∞. (By convention, ifmi j = ∞, this relation
is absent.) Much is known about Coxeter groups; some of this is summarised
below.

Theorem 4 Let G be the Coxeter group with presentation given by Equation (1).

(a) The orders of xi and xix j are 2 and mi j respectively – that is, not strictly
smaller. (If mi j = ∞, then xix j has infinite order.)

(b) For J⊆ I, the subgroup GJ of G generated by{xi : i ∈ J} is the Coxeter group
defined by the presentation

GJ = 〈xi (i ∈ J) : x2
i = 1 (i ∈ J), (xix j)mi j = 1 (i, j ∈ J, i 6= j)〉.

(c) G is isomorphic to the group generated by reflections in a family(Hi : i ∈ I)
of hyperplanes in Euclidean or hyperbolic space where the angle between
Hi and Hj is π/mi j . (If mi j = ∞, the hyperplanes are parallel.)

(d) G is finite if and only if the space in (c) is Euclidean and any two hyper-
planes intersect, or equivalently, the matrix A= (ai j ) with aii = 1 and
ai j =−cos(π/mi j ) for i 6= j is positive definite.
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Any Coxeter group is described by aCoxeter diagram, having one node for
each element ofI , and an edge labelledmi j from i to j. By convention, ifmi j ≤ 4
we use insteadmi j −2 unlabelled edges fromi to j; that is, ifmi j = 2, we omit the
edge, ifmi j = 3 we put a single edge, and ifmi j = 4 we put a double edge. Now
G is finite if and only if the Coxeter diagram is a disjoint union of diagrams of the

typesAn, Cn, Dn, E6, E7, E8, F4, I (m)
2 (m≥ 5), H3 andH4. TheAn diagram is the

same as the one in Figure 2. See Humphreys [3] for more details.
For any Coxeter group, there is an associatedCoxeter complex, a cell complex

constructed as follows. Take the images underG of the reflecting hyperplanes in
part (c) of the theorem. These decompose the real vector space into pieces, which
are the cells of the complex.

There is also a chamber system, obtained by takingB = 1 andPi = 〈xi〉 for
i ∈ I . This chamber system is geometrically realised by the Coxeter complex: the
chambers are the cells of the complex of maximum dimension, and two cells sat-
isfy one of the relationsρi if and only if they are separated by one of the reflecting
hyperplanes. In fact, the hyperplanes mentioned in (c) of the theorem bound the
fundamental chamber C, and the reflection ofC in Hi has the relationρi to C.
Now G acts regularly on the set of chambers, and so these relations can be trans-
ported around the complex by elements ofG. We give, as an example, the Coxeter
complex for the Coxeter group with presentation

〈x1,x2 : x2
1 = x2

2 = (x1x2)4 = 1〉

(this is the dihedral group of order 8): see Figure 3.
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Figure 3: A Coxeter complex

In the figure, the eight chambers are the wedge-shaped regions. Two chambers
are in the relationρ1 if they are separated by a thick line, and in the relationρ2
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if they are separated by a thin line. The chamber system comes from a geometry,
namely the 4-gon. See Figure 4, which adds the chamber system to Figure 1.
The first two diagrams are the same as in the earlier figure: the 4-gon drawn
conventionally and as a Levi graph. The third diagram shows the chamber system:
its chambers are the edges of the bipartite graph, and two chambers are related by
the first or second relation (represented by a thick or thin edge respectively) if they
meet in a vertex of the first or second type (a point or a line respectively).
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Figure 4: A 4-gon

The most important chamber systems arebuildings. Indeed, the notion of
chamber system was developed by Tits to provide a setting for buildings, which
he had previously regarded as incidence geometries. (It was this earlier work of
Tits which inspired Buekenhout’s definition of diagram geometries.)

Let G be a Coxeter group, with presentation given by Equation 1. AG-
building is a setC with a functiond : C×C→ G satisfying certain technical
conditions that will not be given here. Essentially,d is a ‘G-valued metric’, and
we think of two elementsc,c′ of C as being ‘nearest’ whend(c,c′) = xi for some
i. The axioms imply that the relation

ρi = {(c,c′) : d(c,c′) ∈ {1,xi}}

is an equivalence relation; soC has the structure of a chamber system with type set
I . The axioms also imply that it has many subsystems (calledapartments) which
are isomorphic to the Coxeter complex ofG: in fact, any two chambers lie in an
apartment.

For example, a triangle or 3-gon is a Coxeter complex for the Coxeter group

〈x1,x2 : x2
1 = x2

2 = (x1x2)3 = 1〉,
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Condition group element
P′ = P, L′ = L 1
P′ = P, L′ 6= L x1

P′ 6= P, L′ = L x2

P′ 6= P, L′ 6= L, P′ ∗L x1x2

P′ 6= P, L′ 6= L, P∗L′ x2x1

opposite x1x2x1 = x2x1x2

Table 1: A 3-gon

the dihedral group of order 6. If the flag{P,L} is indexed by the identity, then the
indexing of the six flags{P′,L′} in the triangle is shown in Table 1.

We call two flags in a triangleoppositeif no equalities or incidences hold
between any of their members. (The meaning of the term is clear from a picture
of the chamber system.) Now, in a projective plane, we can use the table to assign
the values of theG-valued metricd to pairs of flags; the result is a building, whose
apartments are its triangles. It is an easy exercise to show that a rank 2 incidence
geometry is a projective plane if and only if

(a) given any flag, there is a flag opposite to it;

(b) two opposite flags are contained in a unique triangle.

(Condition (b) shows that two distinct points are incident with a unique line and
dually.)

This observation can be extended. The Coxeter group of typeAn (see Figure 2)
is isomorphic to the symmetric group of degreen+ 1. Now the buildings associ-
ated with this Coxeter group are precisely then-dimensional projective spaces.

The finite buildings of rank at least 3 (and, more generally, the buildings of
rank at least 3 whose Coxeter groups are finite – these are the so-calledspheri-
cal buildings) have been classified by Tits [7]. All of these buildings arise from
geometries, much as for typeAn in the preceding paragraph.

For further details on buildings, see Brown [1] or Ronan [5].
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