Chamber systems and buildings

1 Incidence geometry

Incidence geometry, in its most general sense, involves a number of different types
of geometric objects, with a binary relation of ‘incidence’ which may hold be-
tween objects of different types. The objects may be points, lines, conics, etc.; the
usual term for them is ‘varieties’ (borrowed from algebraic geometry). The most
common situation is where there are just two types, though the more general case
was considered by Moore in 1896.

Formally, an incidence geometry consists of asef varieties a finite set of
types atype mam : V — |, and a symmetric incidence relatieronV, satisfying
the following axiom:

(IG1) Forv,V €V, we haver(v) = 1(V') andvxV if and only ifv=V.

In other words, a variety is incident with itself (this is just a convenient convention)
and with no other variety of the same type. We denot¥ilifie set of varieties of
typei, fori € |. The incidence relatiom can be regarded as adjacency in a graph,
which is multipartite with part¥; (for i € 1), together with a loop at each vertex.
Therank of a geometry is the number of types.

We have assumed that the rank is finite. This assumption can be relaxed; but,
as we will see, induction on the rank is one of the most powerful weapons in a
geometer’s arsenal.

A geometry of rank 2 is what is often referred to asiacidence structure
Combinatorialists often refer to the two types of varieties in an incidence structure
aspointsandblocks and (where possible) like to identify a block with the set
of points incident to it. However, from our point of view, a rank 2 geometry
is a bipartite graph. This graph is often called ttevi graphof the incidence
structure, after Levi in 1929.

Sometimes it is possible to change our point of view of an incidence geometry
to be closer to that just described in the rank 2 case. Let O be a distinguished type.
We take the elements of the 8gtaspoints Now theshadowSh(v) of a varietyv
is the set of all points incident with If the geometry has the additional property
that distinct varieties have distinct shadows, then we can identify all varieties with
sets of points. However, description of incidence in terms of the intersections
of shadows is not straightforward, except in special cases. (In projective spaces,
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which we discuss below, two varieties are incident if and only if the shadow of one
contains the shadow of the other; that is, incidence is ‘symmetrised inclusion’.)
Further axioms are generally assumed; these are now fairly standard although
this has not always been true. These axioms concern maximal flags and connect-
edness. As explained in the Introduction, we do not assume these axioms without
saying so explicitly.
A flagis a set of mutually incident varieties. Note that the type map restricted
to a flag is one-to-one, according to our axioms. ypet1(F) of a flagF is the
set of types of its varieties, that is, the imagd-ofinder the type map. ltsotype
is|\ t(F). Therank of a flag is its cardinality (or, as is the same, the cardinality
of its type), and itxorankis the cardinality of its cotype.
We make the following assumptions.

(IG2) A maximal flag contains one variety of each type; that is, the type map
restricted to a maximal flag is a bijection.

(IG3) A flag of corank 1 is contained in at least two maximal flags.

Condition (IG2) is called theransversality conditionsince it asserts that any
maximal flag is a transversal to the partitiorvbfnduced by the type function.

Sometimes condition (IG3) is relaxed, in which case we call a georfigtny
if it holds. Moreover, a geometry is calledin if (IG3) holds with ‘exactly two’
in place of ‘at least two’, anthick if (IG3) holds with ‘at least three’ in place of
‘at least two’.

Example A cycle consisting of @ vertices and & edges is bipartite, and so is

a thin rank 2 incidence structure. Somewhat confusingly, it is-gon (that is,

its varieties are the vertices and edges of an ordinaggn, and incidence is the
usual geometric notion). Figure 1 shows a 4-gon in its usual representation and
as a geometry (a Levi graph). In the second diagram, the two types are shown as
dots of different sizes. Loops have been omitted.

Example A polyhedron in Euclidean 3-space defines an incidence structure with
three types of varieties: vertices, edges and faces.

Let F be a non-maximal flag. Theesidueof F, denoted byR(F), is the
subgeometry consisting of all the varietiesatisfyingv«w for all w € F but
v¢ F. Itis a geometry whose type is the cotypeFof(and whose rank is the
corank ofF). If (1IG2) and/or (IG3) holds in the whole geometry, then it holds in
the residue of each flag.
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Figure 1: A 4-gon

This construction allows the possibility of induction on the rank of the geom-
etry, both for proofs and for definitions.

A geometryg is connectedf the graph orV defined by the incidence relation
is connected. We say thatis residually connected, for any flagF with corank
atleast 2, the residue Bfis connected. (Of course, if (IG3) holds, then the residue
of a flag of corank 1 is never connected.) For rank 2 geometries, connectedness
and residual connectedness are the same condition. Now the connectedness axiom
which is usually assumed is the following.

(IG4) The geometry is residually connected.

We now turn to the construction of geometries from groupsadtomorphism
of a geometry is a permutation of the $ebf varieties which preserves both the
type function and the incidence relation; that is, every variety is mapped to one of
the same type, and incident pairs of varieties are mapped to incident pairs. This is
sometimes called strong automorphisirin contrast with aveak automorphism
which is also allowed to permute the types. (Thus, a weak automorphism can be
described as a pafg,y), whereg is a permutation o¥ andy a permutation of,
satisfyingt(vg) = t(v)y for all ve V and also(v« V) = (vgxV'g). Thus a weak
automorphism is strong if and onlyyfis the identity permutation.) We consider
only strong automorphisms, and refer to them just as automorphisms.

Any automorphism carries a maximal flag to another maximal flag. A group
G of automorphisms of the geometry is said toféa-transitivelyif any maximal
flag can be mapped to any other by some automorphigg in
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The case where the geometry most closely reflects the structure of the group
occurs when the group is flag-transitive. In this case, we can describe the geometry
within the group, as follows.

Let G be a flag-transitive group of automorphisms of a geométryLet F
be a maximal flag of7, and letv; be the unique variety of typein F andH; the
stabiliser ofv; in G, for all i € 1. Now, sinceG acts transitively onV;, we can
identify the varieties of type with the right cosets oH; in G: the varietyvig
corresponds to the cosig.

We claim:

Two varieties are incident if and only if the corresponding cosets have
non-empty intersection.

For suppose first thadigi "H;g;j # 0. If g belongs to this intersection, thétg; =
Hig andHjg; = Hjg. Now the varietieddig andH;g are the images dfli andH;
under the automorphisg sinceH; = v; andH; = v; are incident, so arelig and
Hig.
J Conversely, suppose thidtgi andH;g; are incident. By flag-transitivity, there
is an automorphisrg carryingH; andHj; to Hjgi andHjgj; sog € HigiNH;g;.
Now we can reverse this procedure: given a gr@pnd subgroupsi; for
i €1, we can define a geometry whose varieties are the cosets of these subgroups,
with the obvious type map and with two varieties incident if they have non-empty
intersection. We call this aoset geometry; (G; (H; :i € 1)). Clearly (1IG1) and
(IG2) hold, andG acts by right multiplication as a group of automorphisms of
the geometry. We investigate what group-theoretic conditions guarantee the other
axioms.
Let B= ¢ Hi, and fori €1, letR =<\ iy Hj. ThenB is the stabiliser of
our standard maximal flalg, and (by flag-transitivity) the stabiliser of any other
maximal flag is a conjugate &. Moreover,R, is the stabiliser of the sub-flag of
F of cotype{i}. Then the varieties of typeincident withF \ {v;} are the cosets
of H; contained irH;P; so

(IG3) holds if and only ifR is not contained ir;.

To investigate residual connectedness, we first note that the coset geometry
G(G;(Hi :i€l)) is connected if and only if the subgroups (for i € I) gener-
ateG. Now the residue of; in the coset geometr (G, (H; :i € 1)) is the coset
geometryG (Hi, (HinH;j : j € '\ {i})). For the residue dfi; consists of all cosets
Hjh with h € H; and j #i. Now Hjh = H;H if and only if h~! € Hi N Hj; so
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the varieties of typg correspond to cosets &f NHj in Hi. Two varieties of this
residue are incident if and only if they have the fdryh andHyh for someh € H;.
So finally:

Theorem 1 The coset geometrg (G, (H; : i € 1)) is residually connected if and
only if, for every subset J of | wit \ J| > 2, we have

ﬂHi:< N Hi:jeI\J>.

ied icJu{ij}

This is not an easy condition to check!

2 Diagrams

The recent revival of interest in incidence geometry with several types has grown
from the work of Buekenhout [2] on diagram geometries. Buekenhout gave a
simple pictorial method of describing natural axiomatic classes of geometries as
follows.

Let| be a finite set. AliagramA overl consists of a sehj; of geometries for
eachi, j € | with i # j. Each geometry ifj; has two types of vertices, which we
will call ‘points’ and ‘blocks’. It is customary to assume that the geometries in
Aj are the duals of those i, in the sense that they are the same geometries but
the attachment of the labels ‘point’ and ‘block’ to the types is reversed.

Diagrams can be represented pictorially. Each clagss represented by a
label on the edge joiningto j in the complete graph on the det We take the
symbol describingd\i to be the typographic reverse of that descriling

Now let G be a geometry with type setWe say that; belongs to the diagram
A if, for any flagF of cotype{i, j }, the residue oF is isomorphic to a geometry
in Ajj, where the isomorphism carries ‘points’ and ‘blocks’ to varieties of types
and | respectively. (This explains why we assume the duality condition above.)

Thus, any diagram gives an axiomatic definition of a class of geometries.

As an example, we discuss projective geometry in some detail. First we define
the classes of geometries in our diagrams. Firgdiganis an incidence structure
in which every point is incident with every block. We represent the class of digons
by theabsencef an edge in the diagram. Nextpeojective planas an incidence
structure in which every two points are incident with a unique block, and any two
blocks with a unique point, but no point is incident with every block and no block
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is incident with every point. This is represented by a single edge without a label.
(Note that both these classes are self-dual, and the symbols used for them are the
same when reversed.) Recall that a digon or projective plahelsif every point
is incident with at least three blocks and dually.

The projective spacef dimensionn over a division ringD is the geometry
whose varieties are all the vector subspaces of the vector §adeexcept for
{0} andD""1. The type of a subspace is one less than its dimension (as a vector
space), and two subspacéd/’ are incident if¥ CV’ orV/ CV. The type set
isl ={0,1,2,...,n—1}. We claim that am-dimensional projective space is
represented by the diagram in Figure 2.

0 1 2 n—-1

Figure 2: The diagramy,

To verify this claim, we must calculate the rank 2 residues. Take aFlag
containing a subspadg of each typek € | except andj, where we may suppose
thati < j. There are two cases:

e | >i+1. Inthis case, the varieties of typare all the subspacéksof type
i satisfyingV;_1 C U C V1, and those of typ¢ are all the subspac¥¥ of
type j satisfyingV;_; CW CVj,;. For any suctJ andW, we have

UCVii1CVj1CW,
soU andW are incident; the residue is a digon.

e | =i+1. Then the varieties of typesandi + 1 are all those subspaces of
these types satisfying
\/i—l g U7W g \/i+2;

these correspond to the 1- and 2-dimensional subspaces of the 3-dimen-
sional quotient spacd./Vi_1. Elementary linear algebra shows that this
residue is a projective plane.

In fact, the converse holds too. A thick geometry belonging to the diagram
A, above forn > 3 is a projective space over a division ring. This follows from
Hilbert’s coordinatisation theorem. This example illustrates how compact the ax-
ioms for projective geometry become in this framework.
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The convention that digons are represented by the absence of an edge in the
diagram helps us to read off properties of the geometry from its diagram. Here are
a couple of simple examples.

Theorem 2 (a) If the diagram of a geometry is disconnected, and two varieties
have types in different components, then they are incident.

(b) Suppose thab,i, j are types such that the removal of i from the diagram
leavesO and j in different components. Take varieties of t@peEs points.
Let v and w be incident varieties of types i and j respectively. Bign) C

Sh(w).

For further details on diagram geometry, see Pasini [4].

3 Chamber systems

Let P(Q) denote the set of all equivalence relations on th€&<deitr, what amounts

to the same thing, the set of all partitions@j. There is a natural partial order

on Q, which can be defined most simply as the relation of inclusion on the equiv-
alence relations. (We regard an equivalence relation as a set of ordered pairs.) In
terms of partitions, the order is given by the rule tRa P, if P, refines B, in

the sense that every partBf is contained in a part d®. This partial order is a
lattice order: the meet of two equivalence relations is just their intersection. The
join is more difficult to define. If1 is a set of equivalence relations, tHegraph

is the graph with vertex seé®, in which two vertices are adjacent if and only if
they are equivalent with respect to some relatioa 1. Then the join ofrtand

p is the relation whose equivalence classes are the connected components of the
{1 p}-graph. This lattice is th&ttice of partitionsof Q. (To simplify notation

later, if a set of equivalence relations is indexed, we speak of-tiraph rather

than the{p; : i € | }-graph.)

Now achamber systerof typel on Q is simply a family(p; : i € I) of equiva-
lence relations 0. The elements of2 are callecchambers We say that cham-
bersa andp arei-equivalentif (a,) € p;; sometimes we write this as~; .

We normally impose two conditions which lose no generality. First, we as-
sume that, ifi,j € | with i # j, anda and 3 are chambers which are both
equivalent and-equivalent, them = 3. Second, we assume that thgraph is
connected. If this is not so, then we can treat each connected component sepa-
rately. In terms of the partition lattice, we are assuming that the meet of any two
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of our relations is equality while the join of all of them is the ‘universal’ relation
Q x Q.

Now letJ be a subset of. We define aesidueof type J to be a connected
component of thd-graph.

The link with incidence geometries works as follows. lgte a geometry
satisfying (IG1) and (IG2), with type sét TakeQ to be the set of maximal flags
of G. For each €| we define an equivalence relatiphwhich holds between
maximal flagsk andF’ if and only if the varieties of typg in F andF’ are the
same for allj #i. (There is no great loss in assuming (IG2) here since a maximal
flag which is not transversal will be invisible from the chamber system viewpoint.)

It is clear that the intersection of two of these equivalence relations is the
relation of equality, but their supremum is not determined. We call the geometry
chamber-connecteitithe chamber system is connected. How is this notion related
to other kinds of connectedness?

Theorem 3 Let G be a geometry satisfying (IG1) and (1G2).
(a) If G is residually connected, then it is chamber-connected.
(b) If G is chamber-connected, then it is connected.

(c) Neither of these implications reverses.

Note that, for a rank 2 geometry, the three types of connectedness in Proposi-
tion 3 coincide. The geometry is a bipartite graph (the Levi graph of the incidence
structure), whose edges are the maximal flags; so its line graph is the chamber
graph of the geometry.

Let G be a geometry with type seétand letC be the corresponding chamber
system. For any subsétof |, we have two notions of residue @it a connected
component of the-graph, and the set of chambers in the residue of aHlad
cotypeG (that is, the set of maximal flags extendiRy We call theseehamber-
residuesand geometric residuesespectively. Since edges in tdegraph join
maximal flags agreeing outside a chamber-residue is contained in a geometric
residue. Proposition 3(a) shows thatgifis residually connected, the two notions
coincide.

This shows that, if a chamber system comes from a residually connected ge-
ometry, then we can recover the geometry as follows: the varieties of tyyee
the chamber-residues of cotypeand two varieties are incident if they have non-
empty intersection. This construction gives the ‘most highly connected’ geometry
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for a given chamber system. In particular, it is sometimes possible to start with a
geometry which is not residually connected and produce one which is.

Not every chamber system comes from a geometry. A familiar class of exam-
ples consists of Latin squares. LAatin squareof ordern may be defined as an
nx narray with entries fron{1,...,n} with the property that each symbol occurs
exactly once in each row or column. Now Rtbe the set of? cells of the array,
and define three equivalence relations as follows:

e (0,B) € pif a andp lie in the same row;
e (0,B) e yif a andp lie in the same column;
e (0,B) € oif a and contain the same symbol.

Now each rank 2 residue contains all the cells, and has the structurenot an
grid. So the attempted construction of a geometry would yield a single variety of
each type.

Chamber systems can be constructed from groups. The construction is in some
respects simpler than the construction of geometries; it works ‘from the bottom
up’, rather than ‘from the top down’. L& be a groupB a subgroup of5, and
(R :iel)afamily of subgroups each containiBgsuch tha NP; =B fori # j.

We takeQ to be the set of right cosets & and, fori € I, two cosets satisfy
relationp; if they lie in the same coset &. This defines a chamber system, on
which G acts by right multiplication as a group of automorphisms (preserving all
the equivalence relations). It is straightforward to show that, forkaayl, the
residues of typd correspond to right cosets of the subgroup

Py=(R:ied);

more precisely, a residue is the set of coset8ah a fixed coset oP;. The
chamber stabiliseB is called theBorel subgroupof G, and the subgroup®; are
the parabolic subgroups

We can associate diagrams with chamber systems in much the same way as
for incidence geometries. L&;; be a class of rank 2 chamber systems for all
distincti, j € I, where the types injj are ‘points’ and ‘blocks’ and these labels in
Aji are assigned in the other sense. Then a chamber system belongs to the diagram
Aif its residues of typdi, j} belong toA;j. For example, in the chamber system
constructed from a Latin square, any rank 2 residuenis a grid; so the chamber
system has a diagram which is a triangle with each edge labelled ‘square grid’.
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(Note that a square grid is the chamber system of a generalised digon with equal
numbers of varieties of each type.)

This is particularly useful in the case of groups. Tdrealgam methodsee
[6]) studies groups generated by known subgroBp®r i € |, which intersect
pairwise in a fixed subgroup. The diagram of the chamber system tells us about
the subgroups o generated by the paifd,P;}. From this, the aim is to get
information abouts. The methods are technical, and we do not discuss them in
detail here.

4 Coxeter groups and buildings

A particularly important class of examples arises frGoxeter groupsA Coxeter
group is a group defined by a presentation of the form

G=(x(iel):x¢=1(¢el), (xx)™=1(,j€l,i#]), (1)

where thamnj are integers (at least 2) ex. (By convention, ifmjj = o, this relation
is absent.) Much is known about Coxeter groups; some of this is summarised
below.

Theorem 4 Let G be the Coxeter group with presentation given by Equation (1).

(a) The orders of xand xx; are 2 and m; respectively — that is, not strictly
smaller. (If m; = o, then xx; has infinite order.)

(b) For JC I, the subgroup Gof G generated byx; : i € J} is the Coxeter group
defined by the presentation

Gi=(x(ied): @=1(€d), (xx)™ =1(i,j€d,i#]).

(c) G is isomorphic to the group generated by reflections in a fahlly. i € 1)
of hyperplanes in Euclidean or hyperbolic space where the angle between
Hi and H; is 1i/myj. (If mj; = o, the hyperplanes are parallel.)

(d) G is finite if and only if the space in (c) is Euclidean and any two hyper-
planes intersect, or equivalently, the matrix=A(a;j;) with ai = 1 and
ajj = —cogT/myj) fori # j is positive definite.
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Any Coxeter group is described byCGoxeter diagramhaving one node for
each element df, and an edge labelledj fromi to j. By convention, ifmj <4
we use insteath; — 2 unlabelled edges froito j; thatis, ifmjj = 2, we omit the
edge, ifmjj = 3 we put a single edge, andrif; = 4 we put a double edge. Now
Gis finite if and only if the Coxeter diagram is a disjoint union of diagrams of the
typesAn, Cy, Dn, Es, E7, Es, Fa, Iém) (m>5), H3 andH,4. TheA, diagram is the
same as the one in Figure 2. See Humphreys [3] for more details.

For any Coxeter group, there is an associ&egeter complexa cell complex
constructed as follows. Take the images ur@ef the reflecting hyperplanes in
part (c) of the theorem. These decompose the real vector space into pieces, which
are the cells of the complex.

There is also a chamber system, obtained by takingl andP, = (x;) for
i € I. This chamber system is geometrically realised by the Coxeter complex: the
chambers are the cells of the complex of maximum dimension, and two cells sat-
isfy one of the relationg; if and only if they are separated by one of the reflecting
hyperplanes. In fact, the hyperplanes mentioned in (c) of the theorem bound the
fundamental chamber,Gnd the reflection o€ in H; has the relatiorp; to C.
Now G acts regularly on the set of chambers, and so these relations can be trans-
ported around the complex by element£ofWe give, as an example, the Coxeter
complex for the Coxeter group with presentation

(X1,X2 1 %0 = X5 = (xpx2)* = 1)
(this is the dihedral group of order 8): see Figure 3.
Ha

Figure 3: A Coxeter complex

In the figure, the eight chambers are the wedge-shaped regions. Two chambers
are in the relatiorp; if they are separated by a thick line, and in the relapen
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if they are separated by a thin line. The chamber system comes from a geometry,
namely the 4-gon. See Figure 4, which adds the chamber system to Figure 1.
The first two diagrams are the same as in the earlier figure: the 4-gon drawn
conventionally and as a Levi graph. The third diagram shows the chamber system:
its chambers are the edges of the bipartite graph, and two chambers are related by
the first or second relation (represented by a thick or thin edge respectively) if they
meet in a vertex of the first or second type (a point or a line respectively).
Pl P]_
C C

Py P Py P

L3 Lo
P3 Ps

Figure 4: A 4-gon

The most important chamber systems btgldings Indeed, the notion of
chamber system was developed by Tits to provide a setting for buildings, which
he had previously regarded as incidence geometries. (It was this earlier work of
Tits which inspired Buekenhout'’s definition of diagram geometries.)

Let G be a Coxeter group, with presentation given by Equation 1G-A
building is a setC with a functiond : C x C — G satisfying certain technical
conditions that will not be given here. Essentiatlyis a ‘G-valued metric’, and
we think of two elements, ¢’ of C as being ‘nearest’ whea(c,c’) = x; for some
i. The axioms imply that the relation

pi = {(c,d):d(c,c) € {1,%}}

is an equivalence relation; €bhas the structure of a chamber system with type set
I. The axioms also imply that it has many subsystems (calpedtmentywhich
are isomorphic to the Coxeter complex®f in fact, any two chambers lie in an
apartment.

For example, a triangle or 3-gon is a Coxeter complex for the Coxeter group

(X1,X2 1 %0 = X3 = (xyx2)® = 1),
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Condition group element
P=P L =L 1
P=P, L' #L X1
PP+4P,L'=L X2
PP£P,L'#L, P xL X1X2
PP#£P,L"#£L,PxL’ XoX1
opposite X1XoX1 = XoX1X2

Table 1: A 3-gon

the dihedral group of order 6. If the fldd,L} is indexed by the identity, then the
indexing of the six flaggP’,L’} in the triangle is shown in Table 1.

We call two flags in a triangl®ppositeif no equalities or incidences hold
between any of their members. (The meaning of the term is clear from a picture
of the chamber system.) Now, in a projective plane, we can use the table to assign
the values of th&-valued metrid to pairs of flags; the result is a building, whose
apartments are its triangles. It is an easy exercise to show that a rank 2 incidence
geometry is a projective plane if and only if

(a) given any flag, there is a flag opposite to it;
(b) two opposite flags are contained in a unique triangle.

(Condition (b) shows that two distinct points are incident with a unique line and
dually.)

This observation can be extended. The Coxeter group ofAyisee Figure 2)
is isomorphic to the symmetric group of degree 1. Now the buildings associ-
ated with this Coxeter group are precisely thdimensional projective spaces.

The finite buildings of rank at least 3 (and, more generally, the buildings of
rank at least 3 whose Coxeter groups are finite — these are the sosjied-
cal building9 have been classified by Tits [7]. All of these buildings arise from
geometries, much as for typg in the preceding paragraph.

For further details on buildings, see Brown [1] or Ronan [5].
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