
Block designs

1 Background

In a typical experiment, we have a setΩ of experimental units or plots, and (after
some preparation) we make a measurement on each plot (for example, the yield of
the plot). So the result of the experiment is a function fromΩ to the real numbers,
that is, an element of the vector spaceRΩ. The dimension of this vector space is
equal to|Ω|, and a basis for the space consists of the characteristic functions of
the elements ofΩ: these are the functionsfα given by

fα(ω) =
{

1 if ω = α,
0 otherwise.

The statistician has two jobs:

• design, that is, specification of the preparations made before the measure-
ment (for example, allocation of treatments to plots);

• analysis, that is, drawing conclusions about the treatments from the result
of the experiment.

If all the plots were identical and independent, design of the experiment would
be easy. We could allocate treatments to plots in any manner, though we might
expect that some allocations are better than others.

Of course, things are not so simple, and the many forms of experimental design
have been devised to cope with the fact that plots are not identical and indepen-
dent. For example, in an agricultural experiment, we may have access to a number
of plots on experimental farms in different parts of the country. We expect that
fertility, drainage, etc., will vary from one plot to another, but that plots on the
same farm will be more alike than plots on different farms.

A block designis the type of experimental design used to cope with this situ-
ation. That is, there is a partitionB of the setΩ into subsets calledblocks, over
which we have no control. We are free to decide which treatment to apply to
each plot, that is, choose a second partition ofΩ into subsets calledtreatments.
Of all possible partitions, we want to choose one that will allow the maximum
amount of information about treatment effects to be extracted from the result of
the experiment.

Thus, ablock designconsists of a setΩ and two partitions ofΩ, the block
partition B and thetreatment partition T. We letn = |Ω|, b = |B|, andv = |T|.
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(Some authors uset for |T|, butt has a different meaning in combinatorial design
theory; think ofv for “varieties”.)

A general reference for block designs is Dey [2].

2 Matrices

The partitionB of Ω into blocks can be described by a linear mapDB from the
vector spaceRΩ to the spaceRB, which maps a functionf ∈ RΩ to g∈ RB given
by

g(x) = ∑
ω∈x

f (ω).

If we use the standard bases for the two vector spaces, the matrix representing
DB has rows indexed byΩ and columns byB, and its(ω,x) entry is equal to 1 if
ω ∈ x, and 0 otherwise. It is an easy exercise to check that

DBD>B = K,

whereK is the diagonal matrix with(x,x) entry equal to the number of plots in
the blockx.

Of course, the treatment partitionT is also represented by a linear transforma-
tion fromRΩ toRT , and hence by a matrixDT satisfying

DTD>T = R,

whereR is the diagonal matrix with(a,a) entry equal to the number of plots in
the treatmenta.

Let
N = DTD>B .

ThenN is theincidence matrixof the design. Its(a,x) entry is equal to the number
of plots in blockx which receive the treatmenta.

3 Binary designs

The block design is calledbinary if each treatment occurs at most once in a block.
In this case,N is a zero-one matrix, and we can regard it as the incidence matrix
of an incidence structure whose points and blocks are the treatments and blocks
of the block design, a point and block being incident if the treatment occurs on

The Encyclopaedia of Design Theory Block designs/2



some plot in the block. In this case,N is the usual incidence matrix of the inci-
dence structure. Thus, block designs in statistics are more general than those in
combinatorics in this respect: they are not necessarily binary!

A binary design (in the sense of a set with two partitions) can be reconstructed
from the corresponding incidence structure. The plots of the design are theflags,
or incident point-block pairs, of the incidence structure. To each block we asso-
ciate the set of flags containing that block; this gives the partition of the plots into
blocks. Analogously, there is a partition of the plots corresponding to the points
(which we re-name as “treatments”).

The incidence graph, or Levi graph, of an incidence structure is the bipartite
graph whose vertices are the points and blocks of the structure, two vertices adja-
cent if one is a point and the other a block incident with it. Thus, a binary block
design is recovered from the Levi graph of its incidence structure by taking the
plots to be the edges of the graph, and the treatments and blocks to correspond to
the two bipartite sets of vertices (in some order).

4 Connectedness

To do any analysis on the experiment, we have to make some assumptions about
the effects of treatments and blocks. We consider here only one simple case, a
fixed-effects linear model. In this case, we assume that the result of the experiment
(which is a vector inRΩ) is given by

f = µ+D>T τ +D>B β +e,

whereµ is a constant vector andτ∈RT , β∈RB are unknown vectors oftreatment
effectsandblock effectsrespectively. The components of the vectore (the random
errors) are assumed to be uncorrelated random variables all having mean 0 and
the same varianceσ2. We wish to estimate the treatment effect vectorτ.

This estimation is done by the least-squares method. This gives rise to the
following system of linear equations forτ:

Cτ = Q f,

where

C = R−NK−1N>,

Q = DT −NK−1DB.
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The matrixC = R−NK−1N> is called theinformation matrixor C-matrixof
the block design.

It is easily shown thatC is positive semidefinite. Moreover, the all-1 vectorj
satisfiesC j = 0. (This corresponds to the fact that, from what we have said,τ can
only be determined up to an additive constant.) Hence a necessary condition for
a linear combinationp>τ of the coefficients ofτ to beestimable(that is, to be in
the image ofC) is thatp> j = 0.

The block design is said to beconnectedif the rank ofC is v−1 (that is, the
null space ofC is spanned byj). If this holds, then the image ofC consists of all
vectors inRT with coordinate sum 0. Such vectors are calledcontrasts. The space
of contrasts is spanned by theelementary contrastsτi− τ j .

The use of the word “connected” is explained by the next result, which is due
to Chakrabarti [1].

Theorem 1 A block design is connected if and only if, for any two treatments
i and j, there is a sequence with first term i and last term j, in which any two
consecutive terms are a treatment and a block which contain a common plot.

Hence, a binary design is connected if and only if its Levi graph is connected.

5 Balance

An unbiased estimator of a treatment contrast is a random variable whose expected
value is the value we are looking for. A design is said to bevariance-balancedif
the variance of the best unbiased estimators of all normalised treatment contrasts
are equal. Rao [5] showed that a connected block design is variance-balanced if
and only if all the non-zero eigenvalues ofC are equal; equivalently:

Theorem 2 A connected block design is variance-balanced if and only if its in-
formation matrix has the form

C = (a−b)I +bJ

for some scalars a and b, where J is the all-1 matrix.

This gives a combinatorial interpretation of variance balance. In particular, the
constancy of the off-diagonal entries ofC means that, if each block is assigned a
weight which is the reciprocal of its cardinality, then the sum of the weights of the
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blocks containing two distinct treatments (counted according to the multiplicities
of the treatments in the blocks) is constant.

There is a related concept ofefficiency balance, which we treat more briefly.
The efficiency of a design is computed relative to a (possibly hypothetical) design
on the same set in which treatment contrasts and block contrasts are orthogonal
(and so can be estimated independently). Such anorthogonal designwould satisfy
N = rk>/n, wherer andk are the vectors of treatment sizes and block sizes (the
diagonals ofRandK respectively).

We turn straight to the criterion for efficiency balance. The matrixR is diag-
onal with positive entries (the sizes of the parts of the treatment partition), and
so has a square rootR1/2 which is also diagonal with positive entries. Now the
M-matrix of the design is defined to be the real symmetric matrix

M = R−1/2NK−1N>R−1/2.

SinceC = R1/2(I −M)R1/2, we see that all the eigenvalues ofM are at most 1.
Moreover, it has the eigenvalue 1, and the multiplicity of this eigenvalue is equal
to 1 if and only if the design is connected.

A connected block design is said to beefficiency-balancedif all the eigenval-
ues of its M-matrix apart from the trivial eigenvalue 1 are equal.

This condition also has a combinatorial interpretation, rather more compli-
cated than that for variance balance. This condition can be extracted from the fact
that the M-matrix has the form(a−b)I +bR1/2JR1/2 for some scalarsa andb.

6 Simplifying conditions

A block design is said to beequireplicateif all treatments contain the same num-
ber of plots; in other words, if the matrixR is a scalar:R= rI .

Deyet al. [3] proved the following result.

Theorem 3 Any two of the following properties of a connected block design im-
plies the third:

(a) variance-balanced;

(b) efficiency-balanced;

(c) equireplicate.
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To see that (a) and (b) are equivalent in the presence of (c) we note that, if
R= rI , thenC andM have the same eigenspaces, and their eigenvalues are related
simply byλC = r(1−λM).

A block design is calleduniform if all parts of the block partition contain
equally many plots. A binary block design ispairwise balancedor combinatori-
ally balancedif any two treatments occur together in the same number of blocks.
We note that a binary, pairwise balanced uniform design is necessarily equirepli-
cate and connected, and is both variance-balanced and efficiency-balanced: we
call such a designbalanced.

We saw earlier that binary block designs can be regarded by incidence struc-
tures. We recall that at-(v,k,λ) design, ort-design, is an incidence structure withv
points, in which every block is incident withk points and anyt points are incident
with λ blocks. Now

(a) a binary uniform design is a 0-design;

(b) a binary uniform equireplicate design is a 1-design;

(c) a binary uniform balanced design is a 2-design.

There is one further distinction made for binary block designs. Such a design
is a complete-block designif every treatment occurs in every block, and is an
incomplete-block designotherwise. In terms of incidence structures, a design is
complete ifk = v and incomplete ifk< v. In the terminology of the last section,
a binary block design is orthogonal if and only if it is a complete-block design.

Thus, abalanced incomplete-block design, or BIBD in the statistical literature,
is a 2-(v,k,λ) design withk< v.

7 Existence

We now consider existence of BIBDs, and summarise some of the main results.

Theorem 4 (a) The parameters of a2-(v,k,λ) design with b blocks and replica-
tion number r satisfy vr= bk and(v−1)λ = r(k−1).

(b) If a 2-(v,k,λ) design exists, thenλ(v−1)≡ 0 (modk−1) andλv(v−1)≡ 0
(modk(k−1)).

(c) Given k andλ, the necessary conditions of (b) are sufficient for all but finitely
many values of v.
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(d) If k< v (andλ> 0) , then b≥ v.

Part (a) is easy double-counting, and (b) follows immediately from (a). Part
(c) was proved by Wilson, and is a consequence of his general theorem on PBD-
closed sets [6]. Part (d) is Fisher’s inequality [4], and indeed holds more generally
for all non-orthogonal efficiency-balanced designs.
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