|
Encyclopaedia of DesignTheory:
Bibliography
|
Books
|
Lecture notes
|
Papers
|
Web resources
This page gives a (necessarily incomplete) list of references on design
theory. For a much wider list of Web resources, see the
Design
Resources page.
Books
-
I. Anderson,
Combinatorial Designs and Tournaments,
Oxford University Press, Oxford, 1997.
-
M. Aschbacher,
Finite group theory,
Cambridge University Press, Cambridge, 1994.
-
E. F. Assmus Jr and J. D. Key,
Codes and Finite Geometries,
Cambridge University Press, Cambridge, 1992:
Web page
-
R. A. Bailey,
Association Schemes: Designed Experiments, Algebra and Combinatorics,
Cambridge Studies in Applied Mathematics,
Cambridge University Press, Cambridge, 2004:
Web page
-
E. Bannai and T. Ito,
Algebraic Combinatorics I: Association Schemes,
Benjamin, New York, 1984.
-
Lowell Beineke and Robin Wilson (eds.),
Topics in Algebraic Graph Theory
Cambridge Univ. Press, Cambridge, 2004.
-
T. Beth, D. Jungnickel and H. Lenz,
Design Theory (2 volumes),
Cambridge University Press, Cambridge, 1999.
-
N. L. Biggs,
Discrete Mathematics (2nd edition),
Oxford University Press, Oxford, 2002.
-
A. E. Brouwer, A. M. Cohen and A. Neumaier,
Distance-regular Graphs,
Springer, Berlin, 1989.
-
K. S. Brown,
Buildings,
Springer, New York, 1989.
-
F. Buekenhout (editor),
Handbook of Incidence Geometry,
North-Holland, Amsterdam, 1995.
-
T. Calinski and S. Kageyama,
Block Designs: A Randomization Approach,
Lecture Notes in Statistics 150, Springer, New York, 2000.
-
P. J. Cameron,
Permutation Groups,
Cambridge University Press, Cambridge, 1999:
Web page
-
P. J. Cameron and J. H. van Lint,
Designs, Graphs, Codes and their Links,
Cambridge University Press, Cambridge, 1991.
-
R. W. Carter,
Simple Groups of Lie Type,
Wiley Interscience, New York, 1972.
-
W. G. Cochran and G. M. Cox,
Experimental Designs,
Wiley, New York, 1950.
-
C. Colbourn and J. Dinitz (editors),
The Handbook of Combinatorial Design,
CRC Press, 1996:
Web page
-
G. M. Constantine,
Combinatorial Theory and Statistical Design,
Wiley, New York, 1987.
-
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
An ATLAS of Finite Groups,
Oxford University Press, Oxford, 1985.
-
D. R. Cox,
Planning of Experiments,
Wiley, New York, 1958.
-
B. A. Davey and H. A. Priestley,
Introduction to Lattices and Order,
Cambridge University Press, Cambridge, 1990.
-
P. Dembowski,
Finite Geometries,
Springer, Berlin, 1968.
-
J. Dénes and A. D. Keedwell,
Latin squares and their applications,
Akademiai Kiado, Budapest, 1974.
-
J. Dénes and A. D. Keedwell (editors),
Latin squares: New developments in the theory and applications,
Annals of Discrete Mathematics, 46, North-Holland, Amsterdam, 1991.
-
A. Dey,
Theory of Block Designs,
Wiley Eastern, New Delhi, 1986.
-
J. H. Dinitz and D. R. Stinson (editors),
Contemporary Design Theory: A Collection of Surveys,
Wiley, New York, 1992.
-
D. J. Finney,
An Introduction to the Theory of Experimental Design,
University of Chicago Press, Chicago, 1960.
-
R. A. Fisher,
The Design of Experiments,
Oliver and Boyd, Edinburgh, 1935.
-
J. A. Gallian,
Contemporary Abstract Algebra,
Houghton Mifflin, Boston, 1998.
-
A. V. Geramita and Jennifer Seberry,
Orthogonal Designs: Quadratic forms and Hadamard matrices,
Marcel Dekker, New York - Basel, 1979.
-
C. D. Godsil,
Algebraic combinatorics,
Chapman & Hall, New York, 1993.
- D. Gorenstein,
Finite Simple Groups: An Introduction to their Classification,
Plenum Press, New York, 1982.
-
R. L. Graham, M. Grötschel and L. Lovász (editors),
Handbook of Combinatorics,
North-Holland, Amsterdam, 1995.
-
Charles M. Grinstead and J. Laurie Snell,
Introduction to Probability (Web-based book)
-
M. Hall Jr.,
Combinatorial Theory,
Wiley, New York, 1986.
-
A. S. Hedayat, N. J. A. Sloane and John Stufken,
Orthogonal Arrays: Theory and Applications,
Springer, Berlin, 1999:
Web page
-
R. Hill,
A First Course in Coding Theory,
Oxford University Press, Oxford, 1986.
-
J. W. P. Hirschfeld,
Projective Geometries over Finite Fields (second edition),
Oxford University Press, Oxford, 1998:
Web page
-
J. W. P. Hirschfeld,
Finite Projective Spaces of Three Dimensions,
Oxford University Press, Oxford, 1985.
-
J. W. P. Hirschfeld and J. A. Thas,
General Galois Geometries,
Oxford University Press, Oxford, 1991.
-
D. R. Hughes and F. C. Piper,
Design Theory,
Cambridge University Press, Cambridge, 1985.
-
J. E. Humphreys,
Reflection Groups and Coxeter Groups,
Cambridge Univ. Press, Cambridge, 1990.
-
Y. Ionin and M. Shrikhande,
Combinatorics of Symmetric Designs,
Cambridge Univ. Press, Cambridge, 2006.
-
J. A. John,
Cyclic Designs,
Chapman and Hall, London, 1987.
-
O. Kempthorne,
Design and Analysis of Experiments,
Wiley, New York, 1952.
-
R. Lidl and H. Niederreiter,
Finite Fields,
Cambridge University Press, Cambridge, 1996.
-
C. C. Lindner and A. Rosa (editors),
Topics in Steiner systems,
Ann. Discrete Math. 7, Elsevier, Amsterdam, 1979.
-
J. H. van Lint,
Introduction to Coding Theory,
Springer, New York, 1982.
-
F. J. MacWilliams and N. J. A. Sloane,
The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.
-
J. D. Malley,
Optimal Unbiased Estimation of Variance Components,
Lecture Notes in Statistics 39, Springer, Berlin, 1986.
-
A. Pasini,
Diagram Geometries,
Oxford University Press, Oxford, 1994.
-
V. Pless,
Introduction to the Theory of Error-correcting Codes,
Wiley, New York, 1982.
-
D. Raghavarao,
Constructions and Combinatorial Problems in Design of Experiments,
Wiley, New York, 1971.
-
M. A. Ronan,
Lectures on Buildings,
Academic Press, Boston, 1989.
-
K. R. Shah and B. K. Sinha,
Theory of Optimal Designs,
Springer, New York, 1989.
-
M. S. Shrikhande and S. S. Sane,
Quasi-symmetric designs,
London Mathematical Society Lecture Note Series 164,
Cambridge University Press, Cambridge, 1991.
-
A. P. Street and D. J. Street,
Combinatorics of Experimental Design,
Oxford University Press, Oxford, 1987.
-
J. Talbot and D. Welsh,
Complexity and Cryptography,
Cambridge University Press, 2006.
-
J. Tits,
Buildings of Spherical Type and Finite BN-Pairs,
Springer, Berlin, 1974.
-
W.D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis,
Combinatorics : Room Squares, Sum-free Sets, Hadamard Matrices,
Lecture Notes in Mathematicsi 292,
Springer-Verlag, Berlin-Heidelberg-New York, 1972, 508 pages.
-
D. J. A. Welsh,
Matroid Theory,
Academic Press, London, 1976.
-
D. J. A. Welsh,
Codes and Cryptography,
Oxford University Press, Oxford, 1988.
Lecture notes on the Web
- Ian Anderson and Iiro Honkala,
A short course on combinatorial designs
- R. A. Bailey,
Notes on
designing an experiment
- Francis Buekenhout,
History and prehistory of polar spaces and of generalized quadrangles
- Peter J. Cameron,
Finite geometry and coding theory
- Peter J. Cameron,
Classical groups
- Peter J. Cameron,
Projective and polar spaces
- Peter J. Cameron,
Polynomial aspects of codes, matroids and permutation groups
- J. Eisfeld and L. Storme,
(Partial) t-spreads and minimal t-covers in finite projective spaces
- Willem H. Haemers,
Matrix techniques for strongly regular graphs and related geometries
- J. I. Hall,
Notes on coding theory
- Steven R. Pagano,
Matroids and signed graphs
- J. A. Thas and H. Van Maldeghem,
Embeddings of geometries in finite projective spaces
Papers
- P. Alejandro, R. A. Bailey and P. J. Cameron,
Association schemes and permutation groups,
Discrete Math. 266 (2003), 47-67.
-
L. D. Andersen and A. J. W. Hilton,
Thank Evans!,
Proc. London Math. Soc. (3) 47 (1983), 507-522.
-
L. Babai,
Almost all Steiner triple systems are asymmetric,
in Topics in Steiner systems (ed. C. C. Lindner and A. Rosa),
Ann. Discrete Math. 7, Elsevier, Amsterdam, 1979, pp. 37-39.
-
R. A. Bailey,
Latin squares with highly transitive automorphism groups,
J. Austral. Math. Soc. (A) 33 (1982), 18-22.
-
R. A. Bailey,
Designs: mappings between structured sets,
pp. 22--51 in Surveys in Combinatorics, 1989 (ed. J. Siemons),
Cambridge Univ. Press, Cambridge, 1989.
-
R. A. Bailey,
Strata for randomized experiments (with discussion),
J. Royal Statistical Society Series B 53 (1991), 27-78.
-
R. A. Bailey,
Orthogonal partitions in designed experiments,
Designs, Codes and Cryptography 8 (1996), 45-77.
-
R. A. Bailey,
Resolved designs viewed as sets of partitions,
pp. 17-47 in Combinatorial Designs and their Applications
(ed. F. C. Holroyd, K. A. S. Quinn, C. Rowley and B. S. Webb),
Chapman & Hall/CRC Press Research Notes in Mathematics 403,
CRC Press, Boca Raton, 1999.
-
R. A. Bailey,
Suprema and infima of association schemes,
Discrete Math. 248 (2002), 1-16.
-
R. A. Bailey:
Balanced colourings of strongly regular graphs.
Discrete Mathematics,
293 (2005), 73-90.
-
K. Balasubramanian,
On transversals in Latin squares,
Linear Algebra Appl. 131 (1990), 125-129.
-
E. Bannai,
An introduction to association schemes,
pp. 1-70 in Methods of Discrete Mathematics (ed. S.Löwe,
F. Mazzocca, N. Melone and U. Ott), Quaderni di Mathematica 5,
Seconda Università di Napoli, Napoli, 1999.
-
R. C. Bose,
On some new series of balanced incomplete block designs,
Bull. Calcutta Math. Soc. 34 (1942), 17-31.
-
R. C. Bose and K. R. Nair,
Partially balanced incomplete block designs,
Sankhya 4 (1939), 337-372.
-
R. C. Bose and J. N. Srivastava,
On a bound useful in the theory of factorial design and
error-correcting codes,
Ann. Math. Statist. 35 (1964), 408-414.
-
F. Buekenhout,
Diagrams for geometries and groups,
J. Combinatorial Theory (A) 27 (1979), 121-151.
-
P. J. Cameron,
Cycle index, weight enumerator and Tutte polynomial,
Electronic J. Combinatorics 9 (2002), #N2 (10pp), available
from
http://www.combinatorics.org.
- P. J. Cameron and C. E. Praeger, Block-transitive t-designs,
I: point-imprimitive designs, Discrete Math. 118 (1993), 33--43;
II, large t, pp. 103-119 in Finite Geometry and Combinatorics
(ed. A. Beutelspacher et al.), Cambridge University Press, Cambridge,
1993.
-
M. C. Chakrabarti,
On the C-matrix in design of experiments,
J. Indian Statist. Assoc. 1 (1963), 8-23.
-
Ph. Delsarte,
An algebraic approach to the association schemes of coding theory,
Philips Research Reports Suppl. 10 (1973).
-
A. Dey, M. Singh and G. M. Saha,
Efficiency balanced block designs,
Commun. Statist. (A) 10 (1981), 237-247.
-
M.~Deza,
Perfect matroid designs,
Encyclopedia of Mathematics and its Applications 40 (1992), 54-72.
-
J. Doyen and R. M. Wilson,
Embeddings of Steiner triple systems,
Discrete Math. 5 (1973), 229-239.
-
R. A. Fisher,
An examination of the different possible solutions of a problem in incomplete
blocks,
Ann. Eugenics 10 (1940), 52-75.
-
C. D. Godsil and B. D. McKay,
Asymptotic enumeration of Latin rectangles,
J. Combinatorial Theory (B) 48 (1990), 19-44.
-
R. Häggkvist and J. C. M. Janssen,
All-even latin squares,
Discrete Math. 157 (1996), 199-206.
-
M. Hall, Jr.,
Automorphisms of Steiner triple systems,
IBM J. Research Develop. 4 (1960), 460-472.
-
M. Hall, Jr.,
Note on the Mathieu group M12,
Arch. Math. 13 (1962), 334-340.
-
D. G. Higman,
Coherent algebras,
Linear Algebra Appl. 93 (1987), 209-239.
-
A. A. Ivanov,
Distance-transitive graphs and their classification,
pp. 283-378 in Investigations in the Algebraic Theory of
Combinatorial Objects
(ed. I. A. Faradzev, A. A. Ivanov, M. H. Klin and A. J. Woldar),
Kluwer, Dordrecht, 1994.
-
M. T. Jacobson and P. Matthews,
Generating uniformly distributed random Latin squares,
J. Combinatorial Design 4 (1996), 405-437.
-
M. R. Jerrum,
Computational Pólya theory, pp. 103-118 in
Surveys in Combinatorics, 1995 (Peter Rowlinson, ed.),
London Math. Soc. Lecture Notes 218, Cambridge University
Press, Cambridge, 1995.
-
P. Kaski and P. R. J. Östergård,
The Steiner triple systems of order 19,
Math. Comp. 73 (2004), 2075-2092.
-
J. H. van Lint,
Block designs with repeated blocks and (b,r,lambda)=1,
J. Combinatorial Theory (A) 15 (1973), 288-309.
-
B. D. McKay and I. M. Wanless,
Most Latin squares have many subsquares,
J. Combinatorial Theory (A) 86 (1999), 323-347.
-
B. D. McKay and I. M. Wanless,
On the number of Latin squares,
Ann. Combin. 9 (2005), 335-344.
-
E. H. Moore,
Tactical memoranda,
Amer. J. Math. 18 (1896), 264-303.
-
P. M. Neumann and C. E. Praeger,
An inequality for tactical configurations,
Bull. London Math. Soc. 28 (1996), 471-475.
-
D. A. Preece, Orthogonality and designs: a terminological muddle,
Utilitas Math. 12 (1977), 201-223.
-
D. A. Preece,
Balance and designs: Another terminological tangle,
Utilitas Math. 21C (1982), 85-186;
correction, ibid. 23 (1983), 347.
-
D. A. Preece,
Fifty years of Youden squares: a review,
Bull. Inst. Math. Appl. 26 (1990), 65-75.
-
D. A. Preece,
Balanced Ouchterlony neighbour designs and quasi Rees neighbour designs,
J. Combinatorial Mathematics and Combinatorial Computing
15 (1994), 197--219.
-
V. R. Rao,
A note on balanced designs,
Ann. Math. Statist. 29 (1958), 290-294.
-
D. K. Ray-Chaudhuri and R. M. Wilson,
Solution of Kirkman's schoolgirl problem,
Combinatorics, Proc. Symp. Pure Math. 19, 187-203 (1971).
-
G.-C. Rota,
On the foundations of combinatorial theory, I:
Theory of Möbius functions,
Z. Wahrscheinlichkeitstheorie 2 (1964), 340-368.
-
H. J. Ryser,
A combinatorial theorem with an application to latin rectangles,
Proc. Amer. Math. Soc. 2 (1951), 550-552.
-
J. Seberry and M. Yamada,
Hadamard matrices, sequences and block designs, pp. 431-560 in
Contemporary Design Theory: A Collection of Surveys
(ed. J. H. Dinitz and D. R. Stinson), Wiley, New York, 1992.
-
J. J. Seidel,
Strongly regular graphs of L2-type and of
triangular type,
Proc. Kon. Nederl. Akad. Wetensch. Ser. A 70
(= Indag. Math. 29) (1967), 188-196.
-
J. J. Seidel,
Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3,
Linear Algebra Appl. 1 (1968), 281-298.
-
J. J. Seidel,
A survey of two-graphs,
pp. 481--511 in
Proc. Internat. Coll. Teorie Combinatorie (Roma 1973),
Accad. Naz. Lincei, Roma, 1977.
-
B. Smetaniuk,
A new construction on latin squares, I: A proof of the Evans conjecture,
Ars Combinatoria 9 (1981), 155-172.
-
T. P. Speed and R. A. Bailey,
On a class of association schemes derived
from lattices of equivalence relations,
pp. 55-74 in Algebraic Structures and Applications
(ed. P. Schultz, C. E. Praeger and R. P. Sullivan),
Marcel Dekker, New York, 1982.
-
W. D. Wallis,
Construction of strongly regular graphs using affine designs,
Bull. Austral. Math. Soc. 4 (1971), 41-49.
-
R. M. Wilson,
Non-isomorphic Steiner triple systems,
Math. Z. 135 (1974), 303-313.
-
R. M. Wilson,
An existence theory for pairwise balanced designs:
I, Composition theorems and morphisms,
J. Combinatorial Theory (A) 13 (1972), 220-245;
II, The structure of PBD-closed sets and the existence conjectures,
ibid. 13 (1972), 246-273;
III, A proof of the existence conjectures,
ibid. 18 (1975), 71-79.
-
R. M. Wilson,
Construction and uses of pairwise balanced designs,
Mathematical Centre Tracts 55, Mathematisch Centrum,
Amsterdam, 1974.
-
P.-H. Zieschang,
Homogeneous coherent configurations as generalized groups and their
relationship to buildings,
J. Algebra 178 (1995), 677-709.
Other Web resources
-
100 years of design theory in Biometrika: an annotated
bibliography by A. C. Atkinson and R. A. Bailey
-
Semi-Latin squares page (maintained by R. A. Bailey)
-
Neighbour-balanced designs page (maintained by R. A. Bailey)
-
Collected papers of R. A. Fisher at the University of Adelaide
(maintained by J. H. Bennett)
-
Fractional factorial design generator by Marko Boon
-
Permutation groups resources (maintained by Peter J. Cameron)
-
Hyperoval Page (maintained by Bill Cherowitzo)
-
Flocks of Cones (maintained by Bill Cherowitzo)
-
Design Links (maintained by Jeff Dinitz)
-
Design and Analysis of Experiments at the
Horticultural Research
Institute (maintained by Rodney N. Edmondson)
-
La Jolla Covering
Repository (maintained by Dan Gordon)
-
Small
association schemes (maintained by A. Hanaki)
-
Matroids page (maintained by Sandra Kingan)
-
History of Statistics
at the University of York (maintained by Peter M. Lee)
-
Design
Computing (software, courses, consulting, research) by Nam-Ky Nguyen
-
Jennie Seberry's
libraries of Hadamard and other matrices, and designs of various types
-
Virtual
Laboratories in Probability and Statistics (maintained by Kyle Siegrist)
-
Library of Orthogonal Arrays (maintained by Neil Sloane)
-
Partial Spreads page (maintained by Leonard Soicher)
-
SOMAs
page (maintained by Leonard Soicher)
-
Ted Spence's
files: designs, strongly regular graphs, Hadamard matrices, etc.
-
Matroid Miscellany (maintained by Thomas Zaslavsky)
Table of contents |
Glossary |
Topics |
Bibliography |
History
Peter J. Cameron
13 March 2006