A partial linear space is a binary block design with the property that each pair of distinct points is contained in at most one block. This page gives all the connected partial linear spaces (up to isomorphism) with v>=2 points, b blocks, constant replication number r>=1 and constant block size k>=2, such that v<=14 if k>=3, and v<=12 if k=2 (k=2 is the case of simple connected regular graphs). The lists of partial linear spaces for given (v,b,r,k) are in DTRS external representation protocol version 2.0 format, compressed by bzip2. Each file has content types i, c, g and s, which mean that each design in these files has, respectively, <indicators>, <combinatorial_properties>, <automorphism_group> and <statistical_properties> subtrees. Moreover, each file has content type a, which means that all connected partial linear spaces (up to isomorphism) with the given (v,b,r,k) are in that file. All the designs on this page have been checked for resolvability, and for each resolvable design at least one resolution is given (a resolution is the same as a 1-factorization when k=2). Moreover, if k>2 or v<12 then equivalence class representatives of all the resolutions of the designs are given.
Number of files = 80
v | b | r | k | PLS | content type | # designs | |
---|---|---|---|---|---|---|---|
2 | 1 | 1 | 2 | * | i c g s a | 1 | download |
3 | 1 | 1 | 3 | * | i c g s a | 1 | download |
3 | 3 | 2 | 2 | * | i c g s a | 1 | download |
4 | 1 | 1 | 4 | * | i c g s a | 1 | download |
4 | 4 | 2 | 2 | * | i c g s a | 1 | download |
4 | 6 | 3 | 2 | * | i c g s a | 1 | download |
5 | 1 | 1 | 5 | * | i c g s a | 1 | download |
5 | 5 | 2 | 2 | * | i c g s a | 1 | download |
5 | 10 | 4 | 2 | * | i c g s a | 1 | download |
6 | 1 | 1 | 6 | * | i c g s a | 1 | download |
6 | 4 | 2 | 3 | * | i c g s a | 1 | download |
6 | 6 | 2 | 2 | * | i c g s a | 1 | download |
6 | 9 | 3 | 2 | * | i c g s a | 2 | download |
v | b | r | k | PLS | content type | # designs | |
6 | 12 | 4 | 2 | * | i c g s a | 1 | download |
6 | 15 | 5 | 2 | * | i c g s a | 1 | download |
7 | 1 | 1 | 7 | * | i c g s a | 1 | download |
7 | 7 | 2 | 2 | * | i c g s a | 1 | download |
7 | 7 | 3 | 3 | * | i c g s a | 1 | download |
7 | 14 | 4 | 2 | * | i c g s a | 2 | download |
7 | 21 | 6 | 2 | * | i c g s a | 1 | download |
8 | 1 | 1 | 8 | * | i c g s a | 1 | download |
8 | 8 | 2 | 2 | * | i c g s a | 1 | download |
8 | 8 | 3 | 3 | * | i c g s a | 1 | download |
8 | 12 | 3 | 2 | * | i c g s a | 5 | download |
8 | 16 | 4 | 2 | * | i c g s a | 6 | download |
8 | 20 | 5 | 2 | * | i c g s a | 3 | download |
v | b | r | k | PLS | content type | # designs | |
8 | 24 | 6 | 2 | * | i c g s a | 1 | download |
8 | 28 | 7 | 2 | * | i c g s a | 1 | download |
9 | 1 | 1 | 9 | * | i c g s a | 1 | download |
9 | 6 | 2 | 3 | * | i c g s a | 2 | download |
9 | 9 | 2 | 2 | * | i c g s a | 1 | download |
9 | 9 | 3 | 3 | * | i c g s a | 3 | download |
9 | 12 | 4 | 3 | * | i c g s a | 1 | download |
9 | 18 | 4 | 2 | * | i c g s a | 16 | download |
9 | 27 | 6 | 2 | * | i c g s a | 4 | download |
9 | 36 | 8 | 2 | * | i c g s a | 1 | download |
10 | 1 | 1 | 10 | * | i c g s a | 1 | download |
10 | 5 | 2 | 4 | * | i c g s a | 1 | download |
10 | 10 | 2 | 2 | * | i c g s a | 1 | download |
v | b | r | k | PLS | content type | # designs | |
10 | 10 | 3 | 3 | * | i c g s a | 10 | download |
10 | 15 | 3 | 2 | * | i c g s a | 19 | download |
10 | 20 | 4 | 2 | * | i c g s a | 59 | download |
10 | 25 | 5 | 2 | * | i c g s a | 60 | download |
10 | 30 | 6 | 2 | * | i c g s a | 21 | download |
10 | 35 | 7 | 2 | * | i c g s a | 5 | download |
10 | 40 | 8 | 2 | * | i c g s a | 1 | download |
10 | 45 | 9 | 2 | * | i c g s a | 1 | download |
11 | 1 | 1 | 11 | * | i c g s a | 1 | download |
11 | 11 | 2 | 2 | * | i c g s a | 1 | download |
11 | 11 | 3 | 3 | * | i c g s a | 31 | download |
11 | 22 | 4 | 2 | * | i c g s a | 265 | download |
11 | 33 | 6 | 2 | * | i c g s a | 266 | download |
v | b | r | k | PLS | content type | # designs | |
11 | 44 | 8 | 2 | * | i c g s a | 6 | download |
11 | 55 | 10 | 2 | * | i c g s a | 1 | download |
12 | 1 | 1 | 12 | * | i c g s a | 1 | download |
12 | 6 | 2 | 4 | * | i c g s a | 1 | download |
12 | 8 | 2 | 3 | * | i c g s a | 5 | download |
12 | 9 | 3 | 4 | * | i c g s a | 1 | download |
12 | 12 | 2 | 2 | * | i c g s a | 1 | download |
12 | 12 | 3 | 3 | * | i c g s a | 229 | download |
12 | 16 | 4 | 3 | * | i c g s a | 574 | download |
12 | 18 | 3 | 2 | * | i c g s a | 85 | download |
12 | 20 | 5 | 3 | * | i c g s a | 5 | download |
12 | 24 | 4 | 2 | * | i c g s a | 1544 | download |
12 | 30 | 5 | 2 | * | i c g s a | 7848 | download |
v | b | r | k | PLS | content type | # designs | |
12 | 36 | 6 | 2 | * | i c g s a | 7849 | download |
12 | 42 | 7 | 2 | * | i c g s a | 1547 | download |
12 | 48 | 8 | 2 | * | i c g s a | 94 | download |
12 | 54 | 9 | 2 | * | i c g s a | 9 | download |
12 | 60 | 10 | 2 | * | i c g s a | 1 | download |
12 | 66 | 11 | 2 | * | i c g s a | 1 | download |
13 | 1 | 1 | 13 | * | i c g s a | 1 | download |
13 | 13 | 3 | 3 | * | i c g s a | 2036 | download |
13 | 13 | 4 | 4 | * | i c g s a | 1 | download |
13 | 26 | 6 | 3 | * | i c g s a | 2 | download |
14 | 1 | 1 | 14 | * | i c g s a | 1 | download |
14 | 7 | 2 | 4 | * | i c g s a | 2 | download |
14 | 14 | 3 | 3 | * | i c g s a | 21398 | download |
v | b | r | k | PLS | content type | # designs | |
14 | 14 | 4 | 4 | * | i c g s a | 1 | download |
14 | 28 | 6 | 3 | * | i c g s a | 787 | download |
Last updated: 2005-04-22 10:19:25.758890