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Abstract
A cube design of order v, or a CUBE(v), is a decomposition of all

cyclicly oriented quadruples of a v-set into oriented cubes. A CUBE(v)
design is unoriented if its cubes can be paired so that the cubes in
each pair are related by reflection through the center. A cube design
is degenerate if it has repeated points on one of its cubes, otherwise
it is nondegenerate.

We show that a nondegenerate CUBE(v) design exists for all in-
tegers v ≥ 8, and that an unoriented nondegenerate CUBE(v) design
exists if and only if v ≥ 8 and v ≡ 0, 1, 2 or 3 (mod 8).
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A degenerate example of a CUBE(v) design is also given for each
integer v ≥ 4.

1 Introduction

Given a positive integer v and an unlimited supply of squares, white on
one side and green on the other, consider making all possible labelled green
squares from v labels, {0, 1, . . . , v − 1}, with distinct labels written at the
corners of a green side. Squares that can be obtained from each other by
rotation are considered the same. Since we can tell the sides of the squares
by their colour, the labelled squares are oriented faces. There are v(v −
1)(v − 2)(v − 3) ways to thusly label a square, starting at a given corner
on a green side and moving counterclockwise, so (dividing by four for the
rotations) the total number of such faces is N = v(v − 1)(v − 2)(v − 3)/4.

Our problem is to assemble these N faces into N/6 cubes so that
(a) each face is used exactly once,
(b) the green side of each face is on the outside of a cube, and
(c) at each corner of the cube, all of the labels agree.

Such a design is an oriented cube design of order v, denoted CUBE(v).
If we began instead with a supply of clear plastic squares and allow our-

selves to flip over a face as well, then there are half as many available unori-
ented faces, N ′ = v(v − 1)(v − 2)(v − 3)/8. If they can be assembled into
N ′/6 cubes according to (a) and (c) above, then we will have an unoriented
cube design of order v, denoted uCUBE(v). We will show that certain
trivial necessary conditions for such a construction to succeed are always
sufficient.

Formally, let V be a v-set whose elements are called labels or points.
Where a, b, c, d are distinct labels, an oriented face, f , is defined by

f = [a, b, c, d] = {(a, b, c, d), (b, c, d, a), (c, d, a, b), (d, a, b, c)},

so that [a, b, c, d] = [b, c, d, a], and an unoriented face, f ′, is defined by

f ′ = 〈a, b, c, d〉 = [a, b, c, d] ∪ [d, c, b, a],

so there is the additional symmetry 〈a, b, c, d〉 = 〈d, c, b, a〉.
An oriented (labeled) cube C, is defined by

C = N [a, b, c, d, e, f ]S

= {[N, a, b, c], [N, c, d, e], [N, e, f, a], [S, f, e, d], [S, d, c, b], [S, b, a, f ]},
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where N , a, b, c, d, e, f , S are labels in V . If two labels of C are the
same then C is degenerate, otherwise it is nondegenerate. For example,
C = 0[1, 2, 3, 4, 5, 6]0 is a degenerate cube. Note that even if a cube is
degenerate, the labels on each of its faces must be distinct.

Our notation for a cube is called equatorial notation. Intuitively, the
corner of C labeled N points upwards and the opposite corner of the cube,
labeled S, points downwards. We call N the North pole and S the South
pole. The six other vertices form a 6-cycle that we read counterclockwise
when looking down from the North pole in the order a, b, c, d, e, f .

Note the following symmetries:

N [a, b, c, d, e, f ]S = N [c, d, e, f, a, b]S (120◦ rotation about the NS-axis),

N [a, b, c, d, e, f ]S = S[f, e, d, c, b, a]N (exchanging poles),

N [a, b, c, d, e, f ]S = a[b, c,N, e, f, S]d (moving a to the North pole).

Of the 8! orderings of N , a, b, c, d, e, f , S there are 24 that represent the
same cube as N [a, b, c, d, e, f ]S.

The set F of all oriented faces having points in V has cardinality |F | =
v(v − 1)(v − 2)(v − 3)/4. An oriented cube design of order v, or a
CUBE(v), is a pair (V,C ) where C is a set of |F |/6 cubes such that each
face in F is contained in a unique cube of C . If C consists of a set of cubes
with points in V such that no face with points in V is in two (or more) cubes
of C then (V,C ) is a partial cube design of order v.

If α : x 7→ xα is a permutation of V , and C = N [a, b, c, d, e, f ]S is a cube
with points in V , then we define the image of C under α to be

Cα = Nα[aα, bα, cα, dα, eα, fα]Sα.

An automorphism of a partial cube design (V,C ) is a permutation α of V
such that Cα ∈ C for all C ∈ C , and the automorphism group of (V,C ),
denoted AUT(V,C ), is the group of all automorphisms of (V,C ).

For example, if V = {0, 1, 2, 3} and C = {0[1, 2, 3, 1, 2, 3]0} then (V,C ) is
a degenerate CUBE(4) design, and the automorphism group is AUT(V,C ) =
〈(1, 2, 3), (0, 1, 2, 3)〉 and has order 24.

An unoriented (labeled) cube is defined similarly:

C = N〈a, b, c, d, e, f〉S
= {〈N, a, b, c〉, 〈N, c, d, e〉, 〈N, e, f, a〉, 〈S, f, e, d〉, 〈S, d, c, b〉, 〈S, b, a, f〉}
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with the additional symmetry N〈a, b, c, d, e, f〉S = S〈d, e, f, a, b, c〉N , where
labels are exchanged along great diagonals. An unoriented cube design
of order v, denoted uCUBE(v), is a pair (V,C ) where C is a set of unori-
ented cubes with points in V such that each unoriented face with points in V
is a face of exactly one unoriented cube in C . Degenerate and nondegenerate
unoriented cube designs, partial unoriented cube designs and their automor-
phisms are defined in a similar way to oriented ones. In particular, in a nonde-
generate unoriented cube design, each (unoriented) cube has distinct labels,
and if α is a permutation of the point set V and C = N〈a, b, c, d, e, f〉S is an
unoriented cube with points in V , then Cα = Nα〈aα, bα, cα, dα, eα, fα〉Sα.

The inversion map I exchanges labels along great diagonals of a cube,
that is

I
(
N [a, b, c, d, e, f ]S

)
= S[d, e, f, a, b, c]N.

Now a uCUBE(v) design is equivalent to a CUBE(v) design whose cubes
can be paired by the inversion mapping (except that we do not consider
a〈b, c, d, b, c, d〉a to be a valid unoriented cube, since its six faces are not
distinct).

The cube is one of the five Platonic solids, so the reader may be wondering
about what is known of designs based on the other Platonic solids.

For the tetrahedron the corresponding oriented design is called a tetra-
hedral quadruple system; its existence and some embedding results are given
in [4]. The unoriented version of this design is just the Steiner quadruple
system S(3, 4, v), which has been well studied, see [1].

For the octahedron the unoriented case was resolved by Hanani [3], and
for the oriented case and for the embedding problem it was resolved by the
first and third authors [5].

The existence of icosahedral and dodecahedral designs is still open.

2 Candelabra cube designs

Let S, G0, G1, . . ., Gt−1 be pairwise disjoint subsets of V = S ∪ G0 ∪ G1 ∪
· · · ∪Gt−1. The set S is called the stem and each Gi is called a group.

If f = [a, b, c, d] is a face with {a, b, c, d} ⊆ V then the width of f is the
number of groups Gi such that {a, b, c, d} ∩Gi 6= ∅. Thus a face has width 0
if and only if all of its points lie in S, and a width 4 face has no points in S
and no two of its points in the same group.
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If W = {w1, w2, . . . , wr} is a set of widths and (V,C ) is a partial cube
design whose cubes cover precisely those faces in V with widths in W , then
(V,C ) is a candelabra cube design covering widths w1, w2, . . . , wr. It
is denoted as a W−CAND CUBE(g0g1 · · · gt−1 : s), where gi = |Gi| for each
i and s = |S|. If the faces and cubes are unoriented we use the notation
W−uCAND CUBE(g0g1 · · · gt−1 : s).

An automorphism of a candelabra cube design (V,C ) with groups
G0, G1, . . . , Gt−1 is an automorphism α of (V,C ) that has the additional
property that the stem and the set of groups are invariant under α, that is,
Sα = S and for each i, Gα

i = Gj for some j. The automorphism group of
a candelabra cube design is the group of all its automorphisms.

We believe that candelabra cube designs may be of interest in their own
right. However, in this paper, we make use of specific small candelabra
cube designs as ingredients to build larger cube designs, and we abbreviate
the notation for the class of candelabra cube designs we shall employ. We
write gt for g0g1 · · · gt−1 when g = g0 = g1 = · · · = gt−1. In this case and
when there is a single width that is equal to the number of groups, we use
the notation CAND CUBE(gt : s) and uCAND CUBE(gt : s), respectively,
for {t}−CAND CUBE(gt : s) and {t}−uCAND CUBE(gt : s). In all our
candelabra cube notations, we omit s from the notation to mean that s = 0,
i.e., the stem is empty.

Note that both oriented and unoriented cube designs are special cases of
candelabra cube designs. For example, a CUBE(v) design is the same thing
as a {4}−CAND CUBE(1v) and also the same as a CAND CUBE(v1).

3 Counting

Let V be a v-set, and let Q be a set of quadruples in V , that is, Q ⊆
(
V
4

)
.

Let
F =

{
[a, b, c, d] : {a, b, c, d} ∈ Q

}
.

If (V,C ) is a partial cube design on V whose cubes cover precisely the faces
in F and no others, then (V,C ) will be said to be based on Q, and we shall
also say that (V,C ) is quadruple-based.

Lemma 3.1 If (V,C ) is a partial (oriented) cube design based on Q, then
|C | = |Q|.
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Proof: With notation as above, we have that |F | = 6|Q|, and a single cube
covers exactly six faces, so |C | = |Q|. �

Thus a CUBE(v) design has
(
v
4

)
cubes, which is also true for the degener-

ate cases with 4 ≤ v ≤ 7. The table below gives cube counts for some designs
we will need, the entries readily verified by quadruple-based counting:

Design number of cubes
CUBE(v)

(
v
4

)
uCUBE(v)

(
v
4

)
/2

{2}−CAND CUBE(gt)
(
t
2

)
·
[(
g
2

)(
g
2

)
+ 2

(
g
3

)
g
]

{3}−CAND CUBE(gt)
(
t
3

)
· 3
(
g
2

)
g2

{4}−CAND CUBE(gt)
(
t
4

)
g4

CAND CUBE(g2 : s)
(
s
2

)
g2 + 2

(
g
2

)
gs+

(
g
2

)(
g
2

)
+ 2

(
g
3

)
g

CAND CUBE(g3 : s) 3
(
g
2

)
g2 + sg3

Note that a {2}−CAND CUBE(gt) does not exist in general, but the
entry can still be useful for counting. For example, the number of cubes in
a {2, 4}−CAND CUBE(gt) can be obtained by adding the counts for each
width separately, since all the designs are quadruple-based.

If (U,D) and (V,C ) are cube designs such that U ⊆ V and D ⊆ C , then
(U,D) is a subdesign of (V,C ). Given a v-set V let

C =

{
a[b, c, d, b, c, d]a : {a, b, c, d} ∈

(
V

4

)}
.

Then (V,C ) is trivially a degenerate CUBE(v) design with a subdesign (U,D)
on any subset U of V , where D consists of those cubes originating from
quadruples contained in U . However, we are interested in nondegenerate
cube designs, for which the following holds.

Lemma 3.2 If a nondegenerate CUBE(v) design has a CUBE(u) subdesign,
then v = u or v ≥ u+ 5.

Proof: For a contradiction suppose that (V,C ) is a nondegenerate cube de-
sign with a subdesign (U,D) and that 0 < |V − U | ≤ 4. Let f = [x, y, z, w]
be a face such that V − U ⊆ {x, y, z, w}, and let C ∈ C be the unique cube
that contains the face f . Then the face f ′ of C that is opposite the face f

6



has all of its points in U , and it follows that C ∈ D , a contradiction as C
has points that are not in U . �

4 The main result

Our main result is the following:

Theorem 4.1 1. A degenerate CUBE(v) design exists for each integer
v ≥ 4.

2. A nondegenerate CUBE(v) design exists for each integer v ≥ 8.

3. A nondegenerate uCUBE(v) design exists if and only if v is an integer
with v ≥ 8 and v ≡ 0, 1, 2 or 3 (mod 8).

The restriction in the case of unoriented cube designs arises from the fact
that a uCUBE(v) has

(
v
4

)
/2 cubes, which must be an integer.

We have shown how to construct a degenerate CUBE(v) design in the
discussion preceding Lemma 3.2. Now we handle the nondegenerate case.

Theorem 4.2 Let s ∈ {0, 1, 2, 3} and let t ≥ 2 be an integer. Then a
nondegenerate CUBE(4t+ s) exists if the following designs exist:

(a) a nondegenerate CAND CUBE(44),

(b) a nondegenerate CAND CUBE(43 : s),

(c) a nondegenerate CAND CUBE(42 : s),

(d) a nondegenerate CUBE(8 + s),

(e) a nondegenerate CUBE(12 + s).

Furthermore, a nondegenerate uCUBE(4t + s) exists if t is even and unori-
ented versions exist of the designs in (a)–(d).

Proof: Let V = {∞0,∞1, . . . ,∞s−1} ∪ ({0, 1, 2, 3} × {0, 1, . . . , t − 1}). Let
S = {∞0,∞1, . . . ,∞s−1} and Gi = {0, 1, 2, 3} × {i}, 0 ≤ i ≤ t− 1.

Case 1. The number of groups, t, is even. In this case pair the groups as
(G0, G1), (G2, G3), . . . , (Gt−2, Gt−1). Form the following sets of cubes:
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(a) Initialise C4 to be the empty set, and then for each set {Gi, Gj, Gk, Gl}
of four groups, add to C4 the cubes of a nondegenerate CAND CUBE(44)
design with groups Gi, Gj, Gk, Gl.

(b) Initialise C3 to be the empty set, and then for each set {Gi, Gj, Gk} of
three groups, add to C3 the cubes of a nondegenerate CAND CUBE(43 :
s) with groups Gi, Gj, Gk and stem S.

(c) Initialise C2 to be the empty set, and then for each set {Gi, Gj} of two
groups that are NOT one of the paired groups, i.e., {i, j} 6= {2r, 2r+1}
for r = 0, . . . , (t− 2)/2, add to C2 the set of cubes of a nondegenerate
CAND CUBE(42 : s) with groups Gi, Gj and stem S.

(d) Initialise C1,2 to be the empty set, and then for each set {G2r, G2r+1}
of two groups that are paired, add to C1,2 the cubes of a nondegenerate
CUBE(s+ 8) on the points G2r ∪G2r+1 ∪ S.

It is readily verified that (V,C1,2 ∪ C2 ∪ C3 ∪ C4) is a nondegenerate
CUBE(4t+ s) design.

Case 2. The number of groups, t, is odd. In this case pair the first t − 3
groups as (G0, G1), (G2, G3), . . . , (Gt−5, Gt−4) and set aside the last three
groups as a triple (Gt−3, Gt−2, Gt−1). Form the following sets of cubes:

(a) Initialise C4 to be the empty set, and then for each set {Gi, Gj, Gk, Gl}
of four groups, add to C4 the cubes of a nondegenerate CAND CUBE(44)
design with groups Gi, Gj, Gk, Gl.

(b) Initialise C3 to be the empty set, and then for each set {Gi, Gj, Gk} of
three groups, where {i, j, k} 6= {t− 3, t− 2, t− 1}, add to C3 the cubes
of a nondegenerate CAND CUBE(43 : s) with groups Gi, Gj, Gk and
stem S.

(c) Initialise C2 to be the empty set, and then for each set {Gi, Gj} of
two groups such that {i, j} 6= {2r, 2r + 1} for r = 0, . . . , (t− 5)/2, and
{i, j} 6⊆ {t−3, t−2, t−1}, add to C2 the set of cubes of a nondegenerate
CAND CUBE(42 : s) with groups Gi, Gj and stem S.

(d) Initialise C1,2 to be the empty set, and then for each set {G2r, G2r+1}
of two groups that are paired, add to C1,2 the cubes of a nondegenerate
CUBE(s+ 8) on the points G2r ∪G2r+1 ∪ S.
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(e) Let C1,2,3 be the set of cubes of a nondegenerate CUBE(s+ 12) on the
points Gt−3 ∪Gt−2 ∪Gt−1 ∪ S.

It is readily verified that (V,C1,2,3∪C1,2∪C2∪C3∪C4) is a nondegenerate
CUBE(4t+ s) design.

Finally, when t = 2k is even, only the nondegenerate designs in (a)-(d)
are needed, and these have an even number of cubes, so if unoriented versions
of these exist, then a nondegenerate uCUBE(8k + s) exists. �

In order to prove the main theorem it suffices to produce the ingredients
required by Theorem 4.2. These small designs are given in the next section.
The main theorem is thus proved.

5 Small nondegenerate cube designs

In what follows we represent 10, 11, 12, . . . by a, b, c, . . ., and denote the
cyclic group of order n by Cn. For most of the designs, (generators for)
a permutation group H acting on the point set is given, such that H is a
subgroup of the automorphism group of the given design. If H is not given
then all cubes in the design are listed. Otherwise, only H-orbit representa-
tives of the cubes of the design are given, where the orbit of a cube C under
H is CH = {Cα : α ∈ H}. The group H was used as an assumed group
of automorphisms when searching for the design, as described in the next
section.

Design: uCUBE(8) on points {0, 1, . . . , 7}.
Cubes: 0〈123654〉7, 0〈132467〉5, 0〈154376〉2, 0〈213475〉6, 0〈247356〉1, 0〈256347〉1,
0〈264157〉3, 0〈346257〉1, 0〈356247〉1, 0〈357246〉1, 0〈527163〉4, 0〈124563〉7,
0〈125673〉4, 0〈126743〉5, 0〈127453〉6, 0〈142635〉7, 0〈143527〉6, 0〈146275〉3,
0〈147365〉2, 0〈152736〉4, 0〈162437〉5, 0〈164257〉3, 0〈165347〉2, 0〈214673〉5,
0〈215743〉6, 0〈216453〉7, 0〈217563〉4, 0〈245176〉3, 0〈254167〉3, 0〈314572〉6,
0〈315642〉7, 0〈316752〉4, 0〈317462〉5, 0〈345167〉2, 0〈354176〉2.

Design: uCUBE(9) on points {0, 1, . . . , 8}.
H = 〈(012345678)〉 ∼= C9.
H-orbit representatives: 3〈462581〉0, 1〈562734〉0, 5〈817324〉0, 6〈351472〉0,
5〈783241〉0, 5〈374126〉0, 3〈518642〉0.
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Design: uCUBE(10) on points {0, 1, . . . , 9}.
H = 〈(02468)(13579)〉 ∼= C5.
H-orbit representatives: 0〈942861〉7, 0〈935427〉8, 7〈961402〉3, 1〈769083〉5,
6〈718495〉0, 3〈195607〉2, 2〈107543〉9, 8〈605972〉1, 9〈560741〉8, 7〈483625〉0,
6〈721854〉3, 1〈879350〉6, 8〈073254〉6, 4〈680379〉2, 1〈027458〉9, 4〈301267〉9,
3〈842019〉7, 9〈517436〉0, 2〈631809〉5, 7〈018452〉9, 3〈526470〉8.

Design: uCUBE(11) on points {0, 1, . . . , 10}.
H = 〈(0123456789a)〉 ∼= C11.
H-orbit representatives: 4〈1a5397〉0, 4〈21368a〉0, 2〈849a15〉0, 9〈57a138〉0,
6〈795a14〉0, 3〈748956〉0, 2〈96783a〉0, 1〈8742a6〉0, 4〈72a581〉0, 6〈3519a2〉0,
3〈815794〉0, 8〈267a54〉0, 4〈931275〉0, 2〈415963〉0, 1〈429653〉0.

Design: CUBE(12) on points {0, 1, . . . , 11}.
H = 〈(0123456789a), (12485a9736), (0b)(1a)(25)(37)(48)(69)〉 ∼= PGL(2, 11).
H-orbit representatives: 1[457ba9]8, 0[153ab9]8.

Design: CUBE(13) on points {0, 1, . . . , 12}.
H = 〈(123456789a), (012935a8476)〉, |H| = 110.
H-orbit representatives: 4[758a9c]b, 0[1ab925]c, 0[43598c]a, 3[498a65]b, 2[5c68b9]a,
2[378a45]9, 1[265a89]7, 0[398672]a.

Design: CUBE(14) on points {0, 1, . . . , 13}.
H = 〈(2ca864)(3db975), (018)(279)(34b)(5cd)〉 ∼= PSL(2, 13).
H-orbit representatives: 0[174cba]d, 4[576acd]b, 5[7bca86]d.

Design: CUBE(15) on points {0, 1, . . . , 14}.
H = 〈(034)(179)(2be)(5ca)(68d), (084dc15)(2e367ba)〉 ∼= Alt(7).
H-orbit representatives: 5[7dcba6]e, 7[8adce9]b, 7[8d9aec]b.

Design: uCAND CUBE(42) on points {0, 1, . . . , 7} with groups {0, 1, 2, 3},
{4, 5, 6, 7}.
Cubes: 3〈425067〉1, 0〈725134〉6, 2〈347065〉1, 7〈140352〉6, 4〈062135〉7, 3〈546021〉7,
5〈403672〉1, 4〈063152〉7, 2〈413065〉7, 0〈265374〉1, 5〈741362〉0, 3〈716524〉0,
2〈157346〉0, 3〈765420〉1, 2〈763410〉5, 0〈462157〉3, 2〈140573〉6, 3〈015276〉4,
1〈542367〉0, 3〈762510〉4, 5〈034617〉2, 1〈347506〉2, 4〈013576〉2, 0〈372465〉1,
7〈412630〉5, 2〈165437〉0, 2〈043756〉1, 6〈231470〉5, 1〈673502〉4, 5〈246710〉3,
0〈341725〉6, 7〈532401〉6, 1〈327460〉5, 3〈706145〉2.
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Design: uCAND CUBE(42 : 1) on points {0, 1, . . . , 8} with groups {0, 1, 2, 3},
{4, 5, 6, 7} and stem {8}.
H = 〈(132)(576), (04)(15)(26)(37), (03)(12)(47)(56), (02)(13)(46)(57)〉, |H| =
24.
H-orbit representatives: 0〈216374〉8, 0〈174658〉3, 0〈163527〉4, 0〈264157〉3,
0〈246175〉3.

Design: uCAND CUBE(42 : 2) on points {0, 1, . . . , 9} with groups {0, 1, 2, 3},
{4, 5, 6, 7} and stem {8, 9}.
H = 〈(0426)(1537), (03)(12)(47)(56)〉 ∼= C4 × C2.
H-orbit representatives: 1〈487659〉3, 0〈526374〉8, 1〈478569〉3, 1〈469857〉3,
0〈469158〉3, 0〈146397〉5, 1〈459768〉3, 0〈245387〉9, 0〈136527〉4, 0〈126437〉5,
0〈647985〉3, 0〈365147〉2, 0〈354167〉2, 0〈145276〉3, 0〈154267〉3, 0〈257346〉1.

Design: uCAND CUBE(42 : 3) on points {0, 1, . . . , 10} with groups {0, 1, 2, 3},
{4, 5, 6, 7} and stem {8, 9, 10}.
H = 〈(89a), (03)(12), (47)(56), (02)(13)(46)(57)〉 ∼= C3 × C2 × C2 × C2.
H-orbit representatives: 2〈49568a〉3, 0〈152637〉4, 0〈469578〉3, 0〈127453〉6,
0〈279548〉3, 1〈25a348〉9, 0〈264157〉3, 0〈254176〉3, 0〈256147〉3, 0〈154376〉2,
0〈164357〉2, 0〈156347〉2, 0〈179348〉2, 0〈145367〉2, 0〈354276〉1, 0〈364257〉1,
0〈356247〉1.

Design: uCAND CUBE(43) on points {0, 1, . . . , 11} with groups {0, 3, 6, 9},
{1, 4, 7, 10}, {2, 5, 8, 11}.
H = 〈(0369)(147a)(258b), (012)(345)(678)(9ab)〉 ∼= C12.
H-orbit representatives: 5〈83706a〉b, 0〈214867〉9, 3〈8a0576〉9, a〈269531〉4,
9〈824b61〉3, 4〈ba9816〉0, a〈708495〉1, 1〈94b078〉6, 5〈276813〉4, 3〈85412a〉9,
6〈a54281〉0, 1〈506892〉a.

Design: uCAND CUBE(43 : 1) on points {0, 1, . . . , 12} with groups {0, 1, 2, 3},
{4, 5, 6, 7}, {8, 9, 10, 11} and stem {12}.
H = 〈(486a597b), (03)(12), (45)(67), (02)(13)〉, |H| = 64.
H-orbit representatives: 2〈4b679c〉3, 2〈4a958b〉3, 2〈49b58a〉3, 0〈379168〉2,
0〈148259〉3, 0〈279368〉1.

Design: uCAND CUBE(43 : 2) on points {0, 1, . . . , 13} with groups {0, 1, 2, 3},
{4, 5, 6, 7}, {8, 9, 10, 11} and stem {12, 13}.
H = 〈(048)(159)(26a)(37b), (03)(12), (47)(56), (8b)(9a), (8a)(9b), (46)(57), (02)(13),
(cd), (48)(59)(6a)(7b)〉, |H| = 768.
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H-orbit representatives: 2〈4bd5ac〉3, 2〈4a859b〉3, 2〈4985ba〉3, 2〈49a58b〉3.

Design: uCAND CUBE(43 : 3) on points {0, 1, . . . , 14} with groups {0, 1, 2, 3},
{4, 5, 6, 7}, {8, 9, 10, 11} and stem {12, 13, 14}.
H = 〈(cde), (23)(67)(8b)(9a)(de), (23)(46)(57), (03)(12), (45)(67), (8a)(9b),
(02)(13)〉, |H| = 192.
H-orbit representatives: 2〈4bd58c〉3, 2〈4a958b〉3, 2〈49b58a〉3, 2〈4985ab〉3,
2〈47a568〉3, 2〈47b659〉3, 2〈45a678〉3, 0〈37a168〉2, 0〈15a348〉2, 0〈27a368〉1.

Design: uCAND CUBE(24) on points {0, 1, . . . , 7} with groups {0, 4}, {1, 5},
{2, 6}, {3, 7}.
H = 〈(04), (15), (26), (37)〉 ∼= C2 × C2 × C2 × C2.
H-orbit representative: 0〈123567〉4.

Design: uCAND CUBE(44) on points {a, b, c, d, e, f, g, h}×{0, 1} with groups
G1 = {a, b} × {0, 1}, G2 = {c, d} × {0, 1}, G3 = {e, f} × {0, 1}, G4 =
{g, h} × {0, 1}.

Let G′1 = {a, b}, G′2 = {c, d}, G′3 = {e, f}, G′4 = {g, h}. For each
quadruple q = {x1, x2, x3, x4} such that |q ∩ G′i| = 1 for each i, construct a
nondegenerate uCAND CUBE(24) on points q × {0, 1} with groups {xi} ×
{0, 1}, 1 ≤ i ≤ 4. This yields a set of 24 · 8 = 44/2 unoriented cubes that
covers each unoriented face of width 4 relative to the groups Gi, hence the
result is a nondegenerate uCAND CUBE(44).

6 The computation of cube designs

Small nondegenerate cube designs were found by hill climbing and by clique
search. Most of the designs were found using a proposed subgroup H of their
automorphism group, so that if a cube C is in the design, then so are all
cubes in the H-orbit of C.

The hill climbs were programmed in the C language and the chosen group
H was usually cyclic, but this was adequate for finding only about a third of
the required designs. For example, a uCUBE(8) (with H the trivial group)
was first found by a hill climb with parameters steps = 15000 and stumble =
2. To begin with, 35 random nondegenerate unoriented cubes were generated
and a count was made of the total number of unoriented faces that were
covered by these 35 cubes. A step consisted of picking a cube randomly
and swapping two of its labels. If the swap did not decrease the count of
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covered faces then it was kept, otherwise the cube was left alone. If 15000
such steps were taken and no design was found yet, then two “stumbles”
were taken, that is, a cube was selected at random and a random change
was made to it, and this was done two times and the count of faces updated.
The process of taking steps was then repeated. No restarting was performed,
only taking steps and stumbling until a design was found or the program
was terminated because it was taking too long. With these parameters a
uCUBE(8) was found in 548740 total steps. Setting steps = 14000 and
stumble = 2 required 10667619 total steps, while setting steps = 10000 and
stumble = 1 required 10251849 total steps.

No systematic attempt was made to try to find ideal settings for the
basic parameters, though some designs required more than a billion steps
to be found this way, such as the bicyclic uCUBE(10) given above, which
required about 1.4 billion total steps.

The CUBE(v) designs with v = 12, 13, 14, 15, and the uCAND CUBE(42 :
s) and uCAND CUBE(43 : s) designs with s = 1, 2, 3, were found using the
computational algebra and discrete mathematics system GAP [2], together
with its GRAPE package [6] for computing with graphs with groups acting
on them. The sophisticated permutation group machinery in GAP allowed
us to generate and try out many possibilities for a subgroup H of the auto-
morphism group of a required design, and the flexible and powerful clique
finding machinery in GRAPE was used to find an H-invariant design (for a
suitable H) when one existed. Possible groups H acting on CUBE(v) designs
were obtained from the GAP library of primitive groups, usually from those
of degree v. For a candelabra cube design, possible groups of automorphisms
were found amongst conjugacy class representatives H of the subgroups of
the group G consisting of all the permutations of the points which fix both
the set of groups and the stem (setwise). These representative subgroups
were computed via the GAP function ConjugacyClassesSubgroups.

Now given a possible group H of automorphisms, we proceed as follows.
For a cube design we compute the H-orbits of all nondegenerate cubes with
labels in the point set. For a (unoriented) candelabra cube design, however,
we only consider those orbits of (unoriented) nondegenerate cubes having
each face of the required width. We then only keep the cube orbits containing
no pair of distinct cubes with a common face. Call the resulting set of orbits
Ω. We construct a vertex-weighted graph Γ with vertex set Ω, the weight of
a vertex being its size (as an orbit), and we join two distinct vertices in Γ by
an edge precisely when the union of these orbits contains no pair of distinct
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cubes with a common face. Then the union of the vertices in a clique (set
of pairwise adjacent vertices) of Γ gives the set of cubes of an H-invariant
nondegenerate partial cube design, and such a clique gives a design of the
required type if and only if its vertex weights sum to the number of cubes in
such a design. For example, for a CUBE(15) the number of cubes is 1365,
and for a uCAND CUBE(43 : 3) this number is 240. To find such a vertex-
weighted clique, or to determine that none such exist, we used the GRAPE
function CompleteSubgraphsOfGivenSize.

Each small design given in the previous section was double-checked to en-
sure it has the required properties. Electronic files of these designs are avail-
able from the authors upon request, together with log-files of the GAP/GRAPE
computations.
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