Optimal approximation for submodular and
supermodular optimization with bounded curvature

Maxim Sviridenko!, Jan Vondrak?, and Justin Ward?

Yahoo! Labs, New York, NY, USA, sviri@yahoo-inc.com
2Stanford University, Stanford, CA, USA, jvondrak@stanford.edu
SEPFL, Lausanne, Switzerland, justin.ward@epfl.ch

16 May 2017

Abstract

We design new approximation algorithms for the problems of optimizing submod-
ular and supermodular functions subject to a single matroid constraint. Specifically,
we consider the case in which we wish to maximize a monotone increasing submodular
function or minimize a monotone decreasing supermodular function with a bounded
total curvature c. Intuitively, the parameter 0 < ¢ < 1 represents how non-linear a
function f is: when ¢ = 0, f is linear, while for ¢ = 1, f may be an arbitrary monotone
increasing submodular function. For the case of submodular maximization with total
curvature ¢, we obtain a (1 — ¢/e)-approximation — the first improvement over the
greedy (1 — e~ ¢)/c-approximation of Conforti and Cornuéjols from 1984, which holds
for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid
constraint.

Our approach is based on modifications of the continuous greedy algorithm and
non-oblivious local search, and allows us to approximately maximize the sum of a
nonnegative, monotone increasing submodular function and a (possibly negative) linear
function. We show how to reduce both submodular maximization and supermodular
minimization to this general problem when the objective function has bounded total
curvature. We prove that the approximation results we obtain are the best possible in
the value oracle model, even in the case of a cardinality constraint.

We define an extension of the notion of curvature to general monotone set functions
and show a (1 — ¢)-approximation for maximization and a 1/(1 — ¢)-approximation for
minimization cases. Finally, we give two concrete applications of our results in the
settings of maximum entropy sampling, and the column-subset selection problem.

mailto:sviri@yahoo-inc.com
mailto:jvondrak@stanford.edu
mailto:justin.ward@epfl.ch

1 Introduction

The problem of maximizing a submodular function subject to various constraints is a meta-
problem that appears in various settings, from combinatorial auctions [32, 14, 40] and
viral marketing in social networks [25] to optimal sensor placement in machine learning
28, 29, 30, 27]. A classic result by Nemhauser, Wolsey and Fisher [35] is that the greedy
algorithm provides a (1—1/e)-approximation for maximizing a monotone increasing submod-
ular function subject to a cardinality constraint. The factor of 1 — 1/e cannot be improved,
under the assumption that the algorithm queries the objective function a polynomial number
of times [34]. While this result rules out improved approximation algorithms for arbitrary
monotone increasing submodular functions, it is nonetheless possible to obtain improve-
ments for restricted classes of submodular functions. One natural such class is based on the
following notion of curvature, introduced by Conforti and Cornuéjols [11]:

Consider a set function f : 2% — Ry, and for any A C X, j & Alet fa(j) = f(AU{j})—
f(A) be the marginal contribution of element j with respect to set A. Then, f is monotone
increasing and submodular if and only if f4(j) > 0 for all A and j & A and fa(j) > fp(j) for
all A C B and j € B, respectively. In this case, the marginal contribution f4(j) of element
7 may diminish as the set A grows, although it always remains non-negative. Intuitively, the
curvature of a monotone increasing submodular function measures how much any element’s
marginal may decrease in the worst case. Formally, the total curvature ¢ € [0, 1] is defined
as:

e D) = 5 () "

jexs o) iex fo(J)

where X* = {i € X : fy(i) > 0}. Note that when ¢ = 0, all marginals of f must remain
constant and so f is linear. Thus, the parameter ¢ is one measure of how far from linear a
submodular function f is. It was shown in [11] that the greedy algorithm for maximizing a
monotone increasing submodular function has an approximation ratio of (1 —e~¢)/c in the
case of a cardinality constraint and #C for a single matroid constraint. Note that the ratios
converge to 1 as ¢ — 0, and 1 — 1/e and 1/2, respectively, as ¢ — 1, corresponding to known
results for the greedy algorithm on linear and submodular functions, respectively.

Recently, various applications have motivated the study of submodular optimization un-
der more general constraints. In particular, the (1 — 1/e)-approximation under a cardinality
constraint has been generalized to any matroid constraint in [6]. This captures various appli-
cations such as welfare maximization in combinatorial auctions [40], generalized assignment
problems [5] and variants of sensor placement [30]. Assuming that a monotone submodular
function f has total curvature ¢, Vondrak [41] generalized the (1 — e™¢)/c-approximation of
Conforti and Cornuéjols [11] to any matroid constraint, and hypothesized that this is the
optimal approximation factor. Indeed, Vondrék [41] showed that this factor is optimal for
any algorithm making a polynomial number of value queries to f, under a slightly general-
ized notion of curvature. Specifically, the lower bound requires that f have curvature ¢ with
respect to the optimum solution.! This is a generalization of the notion of total curvature,

LA function has a curvature ¢ with respect to some set S if f(SUT) — f(S) + > jesnr fsumgin(4) =

Approximation Ratio

—_

08| :
% 06]
=
~
n 04 -
=

0.2 - -~ Previous [41] h

—— This Paper
0 | |

| |
0 0.2 0.4 0.6 0.8 1

Figure 1: Comparison of Approximation Ratios for Submodular Maximization

in the sense that if f has total curvature ¢, it must also have total curvature at most ¢ with
respect to every set S C X.

1.1 Owur Contribution

Our main result is that given total curvature ¢ € [0, 1], the %—approximation of Conforti
and Cornuéjols for monotone submodular maximization subject to a cardinality constraint
[11] is suboptimal and can be improved to a (1 — ¢/e — O(¢))-approximation. We prove that
this guarantee holds for the maximization of a monotone increasing submodular function
subject to any matroid constraint, thus improving the result of [41] as well. We give two
techniques that achieve this result: a modification of the continuous greedy algorithm of [6],
and a variant of the local search algorithm of [19].

Using the same techniques, we obtain an approximation factor of 1+ 1—266_1 + ﬁO(e) for
minimizing a monotone decreasing supermodular function subject to a matroid constraint.
Our approximation guarantees are strictly better than existing algorithms [22] for every value
of ¢ except ¢ =0 and ¢ = 1. The relevant ratios are plotted in Figures 1 and 2. In the case
of minimization, we have also plotted the inverse approximation ratio to aid in comparison.
We also derive complementary negative results, showing that no algorithm that evaluates f
on only a polynomial number of sets can have an approximation performance better than the
algorithms we give. Thus, we resolve the question of optimal approximation as a function of
total curvature in both the submodular and supermodular case. Our hardness results hold
even in the special case of a uniform matroid (i.e. a cardinality constraint).

Further, we show that the assumption of bounded total curvature alone is sufficient to
achieve certain approximations, even without assuming submodularity or supermodularity.

(1 —=¢)f(T) for all sets T C X.

Approximation Ratio Inverse Approximation Ratio

10 T T 0T 1 = T
- - - Previous [22])
- This Paper ! h 08| .
g D .
o v - .
a6 | T 06 .
— - .
~ A, N
@ @Ci 0.4} % :
= 4 1 = \
0.2 - - - Previous [22] \\\ h
21 i —— This Paper N
0 I I L [N
0 1 0 0.2 0.4 0.6 0.8 1
c c

Figure 2: Comparison of Approximation Ratios for Supermodular Minimization

Specifically, there is a (simple) algorithm that achieves a (1 — c¢)-approximation for the
maximization of any monotone increasing function of total curvature at most ¢, subject
to a matroid constraint. (In contrast, we achieve a (1 — ¢/e — O(e))-approximation with
the additional assumption of submodularity.) Also, there is a ﬁ—approximation for the
minimization of any monotone decreasing function of total curvature at most ¢ subject to a
matroid constraint, compared with a (1+7%e™!+ %_CO(E))—approximation for supermodular

functions.

1.2 Applications

We also present two concrete applications of our results. Our first application is related
to the Maximum Entropy Sampling Problem. Here, we are given a distribution over n
random variables, with known covariance matrix M, and the goal is to select a subset of the
variables that is most informative. One natural way to do this is to select some subset with
maximum differential entropy. In the special case that the variables have a joint Guassian
distribution, this is equivalent to finding a principle submatrix of M, corresponding to some
feasible subset of variables, with maximum determinant. The Maximum Entropy Sampling
Problem is NP-hard, and previous work has focused largely on obtaining exact solutions via
branch and bound methods [26, 31]. Here, we consider the general problem of finding a
principle submatrix M[S, S] of some given matrix M with maximum determinant, subject
to a matroid constraint on the set S of columns and rows that may be selected. Even
for the case of a cardinality constraint k, it is impossible to approximate the maximum
subdeterminant to factor better than ¢* for some constant ¢ > 1 [7, 39]. Recently, Nikolov
[36] gave an e*+°(*)_approximation algorithm for this problem, and Nikolov and Singh later
gave an eFto®)_approximation algorithm for maximum subdeterminant problem even under
partition matroid constraints of rank k. Here, we allow for an arbitrary matroid constraint

4

on which columns and rows may be selected, but consider the special case in which the

smallest eigenvalue A\, of M is 1. In this restricted setting, we provide a (1 —(1- %)e’1 —
n A1

O(e))-approximation algorithm for maximizing In det(M[S, S]) (note that our approximation
results hold with respect to the natural logarithm of the determinant).

Our second application is the Column-Subset Selection Problem, which arises in various
machine learning settings. Here, we are given a matrix A € R™*", and the goal is to select
a subset of k columns such that the matrix is well-approximated (say in squared Frobenius
norm) by a matrix whose columns are in the span of the selected k£ columns. This is a
variant of feature selection, since the rows might correspond to examples and the columns
to features. The problem is to select a subset of k features such that the remaining features
can be approximated by linear combinations of the selected features. This is related but
not identical to Principal Component Analysis (PCA) where we want to select a subspace
of rank &k (not necessarily generated by a subset of columns) such that the matrix is well
approximated by its projection to this subspace. While PCA can be solved optimally by
spectral methods, the Column-Subset Selection Problem is less well understood. Here we
take the point of view of approximation algorithms: given a matrix A, we want to find a
subset of k columns such that the squared Frobenius distance of A from its projection on
the span of these k columns is minimized. To the best of our knowledge, this problem is not
known to be NP-hard; on the other hand, the approximation factors of known algorithms are
quite large. The best known algorithm for the problem as stated is a (k + 1)-approximation
algorithm given by Deshpande and Rademacher [12]. For the related problem in which we
may select any set of r > k columns that contain a rank k& submatrix of A, Deshpande and
Vempala [13] showed that there exist matrices for which (k/€) columns must be chosen to
obtain a (14 €)-approximation. Boutsidis et al. [3] give a matching algorithm, which obtains
a set of O(k/e) columns that give a (1 + €) approximation. We refer the reader to [3] for
further background on the history of this and related problems.

Here, we return to the setting in which only k& columns of A may be chosen and show
that this is a special case of monotone decreasing function minimization with bounded total
curvature. We show a relationship between curvature and the condition number s of A,
which allows us to obtain approximation factor of K2. We define the problem and the related
notions more precisely in Section 9.

1.3 Related Work

The problem of maximizing a monotone increasing submodular function subject to a cardi-
nality constraint (i.e., a uniform matroid) was studied by Nemhauser, Wolsey, and Fisher
35], who showed that the standard greedy algorithm gives a (1 — e~ !)-approximation. How-
ever, they later showed that the greedy algorithm has an approximation guarantee of only
1/2 for maximizing a monotone increasing submodular function subject to an arbitrary ma-
troid constraint [20]. More recently, Calinescu et al. [6] obtained a (1 —e™!) approximation
for an arbitrary matroid constraint. In their approach, the continuous greedy algorithm first
maximizes approximately a multilinear extension of the given submodular function and then

applies a pipage rounding technique inspired by [1] to obtain an integral solution. The run-
ning time of this algorithm is dominated by the pipage rounding phase. Chekuri, Vondrak,
and Zenklusen [8] later showed that pipage rounding can be replaced by an alternative
rounding procedure called swap rounding based on the exchange properties of the underly-
ing constraint. In later work [10, 9], they developed the notion of a contention resolution
scheme, which gives a unified treatment for a variety of constraints, and allows rounding
approaches for the continuous greedy algorithm to be composed in order to solve submodu-
lar maximization problems under combinations of constraints. Later, Filmus and Ward [19]
obtained a (1 — e™!')-approximation for submodular maximization in an arbitrary matroid
by using a non-oblivious local search algorithm that does not require rounding.

On the negative side, Nemhauser and Wolsey [34] showed that it is impossible to improve
upon the bound of (1 — e™!) in the value oracle model, even under a single cardinality
constraint. In this model, f is given as a value oracle and an algorithm can evaluate f
on only a polynomial number of sets. Feige [17] showed that (1 — e™!) is the best possible
approximation even when the function is given explicitly, unless P = N P.

In the special case of a uniform matroid, Nemhauser and Wolsey showed that the greedy
algorithm is a 1_jfc-zabpplroximaution algorithm whenever the curvature of f is at most c¢. Later,
Vondrak [41] considered the continuous greedy algorithm in the setting of bounded curvature.
He introduced the notion of curvature with respect to the optimum, which is a slightly weaker
notion than total curvature, and showed that the continuous greedy algorithm is a 1’—5_6—
approximation for maximizing a monotone increasing submodular function f subject to
an arbitrary matroid constraint whenever f has curvature at most ¢ with respect to the
optimum. He also showed that it is impossible to obtain a 1_—Cefc—applroxilrnautiom in this
setting when evaluating f on only a polynomial number of sets. Unfortunately, unlike total
curvature, it is in general not possible to compute the curvature of a function with respect
to the optimum, as it requires knowledge of an optimal solution.

We shall also consider the problem of minimizing monotone decreasing supermodular
functions f : 2¥ — Rsq. By analogy with total curvature, Il'ev [22] defines the steepness
s of a monotone decreasing supermodular function. His definition, which is stated in terms
of the marginal decreases of the function, is equivalent to (1) when reformulated in terms
of marginal gains. He showed that, in contrast to submodular maximization, the simple
greedy heuristic does not give a constant factor approximation algorithm in the general case.
However, when the supermodular function f has total curvature at most ¢, he shows that

C

. . p_1
the reverse greedy algorithm is an eT—apprommatlon algorithm where p = 1=

2 Preliminaries

We now fix some of our notation and give two lemmas pertaining to functions with bounded
total curvature. For brevity, note that we now refer to total curvature as simply curvature.
From this point forth, we use the shorthand notation A + i and A — ¢ to denote the sets
AU {i} and A\ {i}, respectively. Additionally, for any element j € X, and set function
f:2%¥ = R, we write f(j) as a shorthand for f({j}).

2.1 Submodularity and Supermodularity

A set function f : 2% — Ry is submodular if f(A) + f(B) > f(AN B) + f(AU B) for all
A, B C X. As noted in the introduction, submodularity can equivalently be characterized
in terms of marginal values, defined by f4(i) = f(A+i) — f(A) fori € X and A C X — .
Then, f is submodular if and only if f4(i) > fg(i) for all AC B C X and ¢ ¢ B. Similarly,
f is supermodular if and only if —f is submodular. That is, f is supermodular if and only
if fa(i) < fp(i) foral AC BC X and i € B.

We say that a function f is monotone increasing, if fa(i) > 0 foralli € X and A C X —1,
and monotone decreasing if f4(i) < 0 for alli € X and A C X —i. We say that a monotone
increasing function f is normalized if f()) = 0, and similarly, that a monotone decreasing
function is normalized if f(X) = 0. Note that in both cases, a normalized function is always
non-negative.

Finally, suppose that f is monotone increasing and submodular and f3(j) = 0 for some
j € X. Then we have 0 = fy(j) > fa(j) > 0 for all sets A C X. Thus, fa(j) = 0 for
all A C X and so j cannot contribute to any set’s value. In this case, we simply remove j
from X. Similarly, if f is monotone decreasing and supermodular, then f3(j) = 0 implies
that 0 = fy(j) < fa(j) <0 for all A C X, and so again we can remove j from X without
affecting the optimal value of f. Henceforth, we shall thus assume that our problem’s given
objective function f satisfies fy(j) # 0 for every j € X. In particular, this means that we
can simply set X* = X in the definition of curvature (1).

2.2 Matroids

We now present the definitions and notations that we shall require when dealing with ma-
troids. We refer the reader to Schrijver [38] for a detailed introduction to basic matroid
theory. Let M = (X,Z) be a matroid defined on ground set X with independent sets given
by Z. We denote by B(M) the set of all bases (inclusion-wise maximal sets in Z) of M. We
denote by P(M) the matroid polytope for M, given by:

PM)=conv{l; : [€Z}={z>0: ij <rm(S), vS C X},

JjeSs

where) denotes the rank function associated with M. The second equality above is due
to Edmonds [16]. Similarly, we denote by B(M) the base polytope associated with M:

B(M) =conv{l; : I € BM)} ={z € P(M) : > x; =rm(X)}.

jex

For a matroid M = (X,Z), we denote by M* the dual system (X, Z*) whose independent
sets Z* are defined as those subsets A C X that satisfy AN B = () for some B € B(M) (i.e.,
those subsets that are disjoint from some base of M). Then, a standard result of matroid
theory shows that M* is a matroid whenever M is a matroid, and, moreover, B(M?*) is

precisely the set {X \ B : B € B(M)} of complements of bases of M.

Finally, given a set of elements D C X, we denote by M | D the matroid (X N D,Z’)
obtained by restricting to M to D. The independent sets Z' of M| D are simply those
independent sets of M that contain only elements from D. Thatis, I'={A€Z:AND =
A}.

2.3 Lemmas for Functions with Bounded Curvature

We now give two general lemmas pertaining to functions of bounded curvature that will be
useful in our analysis. The proofs, which follow directly from (1), are given in the Appendix.

Lemma 2.1. If f : 2% — Rsq is a normalized, monotone increasing submodular function
with total curvature at most c, then Y .4 fx—j(j) = (1 —¢)f(A) for all A C X.

Lemma 2.2. If f : 2% — Ry is a normalized, monotone decreasing supermodular function
with total curvature at most ¢, then (1 —c¢) > i, fo(j) = —f(X \ A) for all AC X.

3 Submodular + Linear Maximization

Our new results for both submodular maximization and supermodular minimization with
bounded curvature make use of an algorithm for the following meta-problem: we are given
a monotone increasing, normalized, submodular function g : 2% — Ry, a linear function
¢ : 2% - R, and a matroid M = (X,Z) and must find a base S € B(M) maximizing
g(S) + £(S). Note that we do not require ¢ to be nonnegative. Indeed, in the case of
supermodular minimization (discussed in Section 6.2), our approach shall require that ¢
be a negative, monotone decreasing function. We note that because ¢ is linear, we have
U(A) =3 ;L) for all A C X,

Let 0, = maxjex ¢(j), 0¢ = maxjex |((j)|, and © = max(0,,0,). Then, because g is
submodular and ¢ is linear, we have both g(A4) < nv and |[((A)| < no for every set A C X.
Moreover, given ¢ and g, we can easily compute ¢ in time O(n). Our main technical result
is the following, which gives a joint approximation for g and ¢.

Theorem 3.1. For every € > 0, there is an algorithm that, given a normalized, monotone
increasing submodular function g : 2% — Rs, a linear function £ : 2% — R and a matroid
M, produces a set S € B(M) in polynomial time satisfying with high probability

g(S) +£(S) > (1 — e7") g(Sopr) + €(Sopr) — O(e) - 0,
for every Sopr € B(M).

In the next two sections, we give two different algorithms satisfying the conditions of
Theorem 3.1.

4 A Modified Continuous Greedy Algorithm

The first algorithm we consider is a modification of the continuous greedy algorithm of [6].
Here, we describe the algorithm conceptually in the continuous setting, ignoring certain
technicalities, which we shall address formally in Appendix B.

Consider x € [0,1]X. For any function f : 2% — R, the multilinear extension of f is a
function F : [0,1]¥ — R given by F(z) = E[f(R(z))], where R(x) is a random subset of
X in which each element e appears independently with probability z.. Given two vectors
z,y € [0,1]%, we denote by xVy and z Ay the vectors obtained by taking the coordinate-wise
maximum and minimum, respectively, of x and y. The multilinear extension F' satisfies the
following properties, which follow from the submodularity of f [6, 18]:

12— pevi,) — Flo Ay) = Z82F@) o a1 2 € [0,1)X and e € X.

Oxe 1—z,
2. F(z)+ F(y) > F(xVy) + F(z Ay) for all z,y € [0,1]*.

Now, we let G denote the multilinear extension of the given, monotone increasing sub-
modular function g, and L denote the multilinear extension of the given linear function /.
Note that due to the linearity of expectation, L(z) = E[{(R(x))] = >_,cx z;¢(j). That is,
the multilinear extension L corresponds to the natural, linear extension of ¢. Let P(M) and
B(M) be the matroid polytope and matroid base polytope associated with M, and let Seopr
be the arbitrary base in B(M) to which we shall compare our solution in Theorem 3.1. Our
algorithm is shown in Figure 3. Note that in contrast to the standard continuous greedy
algorithm, here we maximize VG over the polytope Py obtained from B(M) by including
the additional linear constraint L(z) > A to the matroid polytope. As we shall show, this en-
sures that at each time we obtain a direction that is larger than both the value of A = ¢(Sopr)
and the residual value g(Sopr) — G(x). Applying the standard continuous greedy algorithm
the polytope B(M) and the function (g + ¢) would give a direction that is larger than the
sum of these two values, but this is insufficient for our purposes.

Our analysis proceeds separately for L(z) and G(z). First, because L is linear, and
v(x) € Py, we have:

% = S u(b)ile) = L{v(t)) > A,

ecX

and therefore
1 dL 1
L(x(l)):/ Edtz/ ME = A = (Sopr).
0 0

For the submodular component, we note that 15, € P,, and thus at each time step ¢, we
must have:

dG

— = () VG(a(t) 2 Ls,,, - VG(2(t) = ; —angjft” = ; Aelt 1v EE;BQ)G(W))
>) Gla(t) V1) = Gla(t) > Ga(t) V 1s,,) = G(a(t) > G(1s,.,) — Ga(1)).

e€Sopr

Modified Continuous Greedy
e Guess the value of A = ¢(Sopr).
o Let P\ =BWM)N{x: L(z) > A}
e Initialize z(0) = 0.

e For time running from ¢t = 0 to ¢t = 1, update z(t) according to

dz
i v(t),
where v(t) = arg max,ep, (v - VG(2(t))).

e Apply randomized pipage rounding to the point x(1) independently N =
O(e2n?logn) times to obtain Si,...,Sy.

e Return arg max;cpny f(.5;)-

Figure 3: The modified continuous greedy algorithm

Thus, G(z(t)) dominates the solution of differential equation 22 = g(Sopr) — B(t), ¢(0) = 0,
which is given by (1 — e *)g(Sopr). Combining the bounds on the linear and submodular
components we obtain F'(z(1)) = G(z(1)) + L(x(1)) > (1 — e 1)g(Sopr) + £(Sopr). Moreover,
note that z(1) is a convex combination fol v(t)dt and each v(t) lies in the polytope B(M).
Thus, (1) € B(M). In Appendix B we show how to implement the guessing of A, as well
as how to discretize time and efficiently find v at each step. Both of these details can be
addressed while losing at most an additive term of O(e) - 0 from the guarantees presented
here.

In the last step, we run pipage rounding on z(1) independently N = ©(e ?n?logn) times
to obtain N solutions Si,...,Sy in B(M), and return the best solution obtained. Then,
as shown in [6], because f = g + ¢ is submodular, we have E[f(S;)] > F(z(1)) for each
S;. Consider the random variables Y; = w, and note that E[Y;] > 0. For any set
A C X, g(A) < nv and |[¢(A)] < nd. Hence, we have |Y;| < 1 for all i. The algorithm
returns S = arg max;en f(5;). Thus, f(S) > %Ziem f(S;) and Pr[f(S) < F(z(1)) — 2e0]
is at most Pr[| >, v Yil > X¢]. By a standard, symmetric variant of the Chernoff bound
(see e.g. [2, Theorem A.1.16]) this probability is at most e~ Net/2n? — o=O(logn) Thys, with
high probability:

f(S) > F(x(1)) —O(e) - o> (1 — e 1)g(Sopr) + £(Sopr) — Ofe) - 1.

10

5 Non-Oblivious Local Search

We now give another proof of Theorem 3.1, using a modification of the local search algorithm
of Filmus and Ward [19]. In contrast to the modified continuous greedy algorithm, our
modified local search algorithm does not need to guess the optimal value of £(Sopr), and also
does not need to solve the associated continuous optimization problem over Py. However,
here the convergence time of the algorithm becomes an issue that must be dealt with. We
give a high-level overview of the algorithm here, ignoring the issue of convergence time. We
present a full analysis considering convergence time in Appendix C

We begin by presenting a few necessary lemmas and definitions from the analysis of [19].
We shall require the following general property of matroid bases, first proved by Brualdi [4],
which can also be found in, e.g. [38, Corollary 39.12a].

Lemma 5.1. Let M be a matroid and A and B be two bases in B(M). Then, there exists
a bijection m: A — B such that A — x + w(x) € B(M) for all x € A.

We can restate Lemma 5.1 as follows: let A = {ay,...,ax} and B be bases of a matroid
M of rank k. Then we can index the elements b; € B so that b; = m(a;), and then we have
that A—a; +b; € B(M) for all 1 <1 < k. The resulting collection of sets {A—a; +; }icx) will
define a set of feasible swaps between the bases A and B that we consider when analyzing
our local search algorithm.

The local search algorithm of [19] maximizes a monotone submodular function g using
a simple local search routine that evaluates the quality of the current solution using an
auxiliary potential h, derived from ¢ as follows:

pA) =Y o) [

Bca g e—1
We shall make use of the following fact, proved in [19, Lemma 4.4, p. 524-5|: for all A,
9(A4) <h(A) <C-g(A)nn

for some constant C'
In order to jointly maximize ¢(S) + ¢(S), we employ a modified local search algorithm
that is guided by the potential v, given by:

Y(A) = (1—e)h(A) +(A),

where h is derived from g as above. Our final algorithm is shown in Figure 4. We defer a
discussion of issues related to estimating h efficiently to Appendix C. Here, we present the
main ideas of our modified algorithm, assuming that A can be computed exactly. As in our
discussion of the continuous greedy algorithm, we can address the remaining technicalities
while losing only an additive O(e) - ¢ term from our guarantees.

The following Lemma shows that if it is impossible to significantly improve ¥ (S) by
exchanging a single element, then both ¢(S) and ¢(S) must have relatively high values.

11

Non-Oblivious Local Search

A

o letd=<-90.

£
n

e S < an arbitrary base Sy € B(M).

e While there exists a € S and b € X \ S such that S —a+b € B(M) and
P(S —a+0b) > P(S)+4,
set < S—a+b.

e Return S.

Figure 4: The non-oblivious local search algorithm

Lemma 5.2. Let A ={ay,...,a;} and B ={by,..., by} be any two bases of a matroid M,
and suppose that the elements of B are indexed according to Lemma 5.1 so that A—a; +b; €
B(M) for all1 <i<k. Then,

k

g(A) +€(A) = (1= e)g(B) + £(B) + > [th(A) — p(A—a;+b;)].

=1

Proof. Filmus and Ward [19, Theorem 5.1, p. 526] show that for any submodular function
g, the associated function h satisfies

k

9(A) = g(B) + Y [h(A) = h(A = a; + b)]. (2)

=1

e
e—1

We note that since ¢ is linear, we have:

((A) = ((B) + Z [£(ai) — £(bs)] = £(B) + Z [€(A) = €(A — a; + by)] (3)
Adding (1 — e™!) times (2) to (3) then completes the proof. O

Suppose that S € B(M) is locally optimal for ¢ under single-element exchanges, and let
Sopr be an arbitrary base of M. Then, local optimality of S implies that ¢ (S) — (S — s; +
0;) > 0 for all ¢ € [k], where the elements s; of S and o; of Sopr have been indexed according
to Lemma 5.1. Then, Lemma 5.2 gives ¢(S) +£(S) > (1 — e™) g(Sopr) +£(Sopr), as required
by Theorem 3.1.

12

6 Submodular Maximization and Supermodular Min-
imization

We now return to the problems of submodular maximization and supermodular minimization

with bounded curvature. We reduce both problems to the general setting introduced in

Section 3. In both cases, we suppose that we are seeking to optimize a function f : 2% — R

over a given matroid M = (X, Z) and we let Sopr denote any optimal base of M (i.e., a base
of M that either maximizes or minimizes f, according to the setting).

6.1 Submodular Maximization

Suppose that f is a monotone increasing submodular function with curvature at most ¢ €
[0, 1], and we seek to maximize f over a matroid M.

Theorem 6.1. For every ¢ > 0 and ¢ € [0, 1], there is a randomized algorithm that given
a monotone increasing submodular function f : 2% — Rsq of curvature ¢ and a matroid
M = (X,Z), produces a set S € T in polynomial time satisfying

f(5) =2 (1 =c/e=0(e)) f(Sorr)
for every Sopr € Z, with high probability.
Proof. Define the functions:

A) =) fx0)

jeA
9(A) = f(A) = €(A).

Then, ¢ is linear and ¢ is submodular, monotone increasing, and nonnegative (as verified
in Lemma A.1 in Appendix A). Moreover, because f has curvature at most ¢, Lemma 2.1
implies that for any set A C X,

UA) =2 jea Ix—(7) =2 (1 =) f(A).

In order to apply Theorem 3.1 we must bound the term ©. By optimality of Sypr and
non-negativity of £ and g, we have 0 < g(Sopr) +€(Sopr) = f(Sopr). Then, from Theorem 3.1,
with high probability we can find a solution S satisfying:

£(5) = g(S) + ((5)
> (1 — e 1) g(SopT) + (SOPT) - O<€) ’ f(SOPT)
= (1 —e 1) f(SOPT) + 71£(SOPT) - O()) f(SOPT)
> (=€) f(Sorr) + (1 = c)e™" f(Sorr) = O(e) - f(Sorr)
=(1—ce " = 0(€)) f(Sopr)- -

6.2 Supermodular Minimization

Suppose that f is a monotone decreasing supermodular function with curvature at most
c € [0,1) and we seek to minimize f over a matroid M.

Theorem 6.2. For every ¢ > 0 and ¢ € [0,1), there is a randomized algorithm that given
a monotone decreasing supermodular function f : 2% — Rsq of curvature ¢ and a matroid
M = (X,Z), produces a set S € T in polynomial time satisfying

C

)< (14 e+ 00 £(Son)

1—-c 1—-c
for every Sopr € L, with high probability.

Proof. Define the linear and submodular functions:

0A) =" fol)

9(A) = —L(A) = f(X\ 4).

Let us provide some intuition for the definitions of ¢ and g, beginning with the following
naive reduction. Finding an exact minimizer S of f(5) is equivalent to finding a maximizer
S of f(0) — f(S). Because f is monotone decreasing, normalized, and supermodular, the
latter objective is monotone increasing, normalized, and submodular. Unfortunately, f(0)
may be arbitrarily large, and so an approximate solution for the latter problem may be
an arbitrarily bad solution of the original problem. In order to remove this dependency
on f(0), we consider instead the problem of finding some S that maximizes —f(X \ S) in
the dual matroid M*, whose bases correspond to complements of bases of M. Thus, our
definitions of ¢ and g give —f(X \ S) = £(S5) + ¢g(5). Because f is monotone decreasing, we
have f3(7) < 0 and so ¢(A) < 0 for all A C X. Thus, ¢ is a non-positive, decreasing linear
function. However, as we verify in Lemma A.2 of the appendix, ¢ is submodular, monotone
increasing, and nonnegative.

Now, let us turn to the problem of finding an S that maximizes g(S)+¢(S) = —f(X\5) in
the dual matroid M*. We compare our solution S to this problem to the base S&,, = X'\ Sopr
of M* corresponding to the optimal solution Syp; of the original supermodular minimization
problem. Again, in order to apply Theorem 3.1, we must bound the term ©. Here, because
((A) is non-positive, we cannot bound ¢ directly as in the previous section. Rather, we
proceed by partial enumeration. Let é = argmax;cgs,, max(g(j), [¢(j)|). We iterate through
all possible guesses e € X for é, and for each such e consider 0, = max(g(e), |[¢(e)|). We set
X, tobetheset {7 € X :9(j) <0 A |€(j)| < D}, and consider the matroid M* = M* | X,
obtained by restricting M* to the ground set X.. For each e satisfying 7 (Xe) = rae- (X),
we apply our algorithm to the problem max{g(A) + ¢(A) : A € M?}, and return the best
solution S obtained. Note since 7y (Xe) = ra=(X), the set S is also a base of M* and so
X\ S is a base of M.

14

Consider the iteration in which we correctly guess e = €. In the corresponding restricted
instance we have ¢g(j) < 0. = v and |[((j)| < 0. = 0 for all j € X.. Additionally, the

base S5, € Xe. Thus, 7py:(Xe) = [Shor] = rav=(X) and S5, € B(M), as required by

our analysis. Finally, from the definition of g and ¢, we have f(Sopr) = f(X \ S&pp) =
—0(SE,.) — g(S&pr). Since é € S¢,., and / is nonpositive while f is nonnegative,

v < g(S;PT> + |£<S:>PT)‘ = _€<SSPT) - f(SOPT> - €<S:>PT) < _2€(S?)PT>‘
Therefore, by Theorem 3.1, the base S of M* returned by the algorithm satisfies:
9(S) +4(S) = (1 = e7")g(Sopr) + €(Seer) + O(e) - L(S5pr),

with high probability. Finally, since f is supermodular with curvature at most ¢, Lemma 2.2
implies that for all A C X,

—U(A) == jea foli) < THF(XN\A).

Thus, with high probability, we have

FXN\8) = —g(5) —€(S)
< = (1 =€) 9(Soer) — USGer) — O(e) - £(S5er)
— (1—e) f(opT)—("+ 0()) U(S5er)
3(1—6 Y F(Sore) + (671 +0()) - 2= - f(Sopr)

(14 1% e+ - 0(e)) f(Sorr). 0

Note that because the error term depends on ﬁ, our result requires that ¢ is bounded
away from 1 by a constant.

7 Inapproximability Results

We now show that our approximation guarantees are the best achievable in the value oracle
model, even in the special case that M is a uniform matroid (i.e., a cardinality constraint).
Specifically, we show that if f is given by a value oracle then no algorithm that makes only
a polynomial number of queries to f can attain a constant factor approximation better than
those presented in the previous sections. Our inapproximability results are obtained by
considering the problem:

max{f(5) : |S] <k}, (4)

where f is a submodular function that additionally satisfies the following property: let Sopr
be an optimal solution to (4), and let p = max.cy fy(e); then, f(Sopr) = kp. Let f be a
function from this restricted class, and § > 0 be any given constant. We show that any
algorithm A approximating max{f(5) : |S| < k} to a factor of (1 — ce™* + §), where f is
an arbitrary monotone submodular function of curvature at most ¢ € (0,1), can be used to

15

approximate (4) to a factor of (1 —e~!+O(d)). Moreover, if the A makes only a polynomial
number of value queries to f, then we can achieve this approximation ratio for (4) using
only a polynomial number value queries to f. Although our reduction holds only under
the assumption that f(Sopr) = kp, we show in Appendix D that this property is in fact
satisfied by the hard functions constructed by Nemhauser and Wolsey [34]. Specifically, they
show? that there is a function satisfying f(Sopr) = kp for which no algorithm that makes
only a polynomial number of value queries can obtain any constant-factor approximation
ratio better than (1 — e™'). This, combined with our reduction then shows that there is no
(1 — e! + §)-approximation algorithm for maximizing a monotone increasing submodular
function f of curvature at most ¢ under a cardinality constraint that uses only a polynomial
number of value queries to f . We now give a full description and analysis of our reduction,
as well as an analogous reduction in the case supermodular minimization.

Theorem 7.1. For any constant 6 > 0 and c € (0, 1), there is no (1—ce™'+6)-approzimation
algorithm for the problem max{ f(S) : |S| < k}, where f is a monotone increasing submodular
function with curvature at most ¢, that evaluates f on only a polynomial number of sets.

Proof. Let a = (1 — ce™! +§). Suppose for the sake of contradiction that for any monotone
increasing submodular function f with curvature at most ¢, we could obtain a set S with
|S| < k satisfying f (S) >« f (Sopr) with constant probability for all Sopr With |Sopr| < k by
using only a polynomial number of value queries to f . We shall show that this contradicts
the negative result of Nemhauser and Wolsey [34]. Let f be a function from the family given
by Nemhauser and Wolsey [34] for the cardinality constraint k, and let Sopr be a set of size
k on which f takes its maximum value. We define the function

L

c

where p = max;ex fy(i). Note that f can be constructed by using only n initial queries
to f, and each subsequent query to f can be accomplished using only a single query to f.
Moreover, in Lemma A.3 in Appendix A, we show that f is monotone increasing, submodular,
and nonnegative with curvature at most c¢. Thus, by assumption, we can obtain a set S
satisfying f (S) > (1 —ce ! +9) f (Sopr) using only a polynomial number of value queries
to f , and hence to f. Because f is monotone increasing, we can assume without loss of
generality that |S| = k. Then, from the definition of f and our assumption,

1

1-— — 1-— 1
f(S)+TC'kpZ Oé'f(SopT)+a'Tc'kp: Oé'f(SopT>+Oé‘ €

'f(SOPT) = E 'a'f<SOPT)7

2The analysis of Nemhauser and Wolsey [34] applies to deterministic algorithms only. In Appendix D we
show how to extend it to randomized algorithms succeeding with any constant probability.

16

with constant probability, and so

f(5) =

I
TN N0
Al ol .
Q
|
—_
o
o
~__
—
—~
>
lav)
=

with constant probability. This contradicts the information-theoretic hardness for maximiz-
ing the function f. O]

Theorem 7.2. For any constant 6 > 0 and ¢ € (0,1), there is no (1 4+ tSe ' — 0)-

approzimation algorithm for the problem min{f(S) : |S| < k}, where fA is a monotone
decreasing supermodular function with curvature at most ¢, that evaluates f on only a poly-
nomial number of sets.

Proof. Our argument proceeds similarly to the proof of Theorem 7.1. Again, let f be a
function in the family given by Nemhauser and Wolsey [34] for the cardinality constraint k,
and let Sopr be a set of size & on which f takes its maximum value. We now construct the
function

JA) = 21X\ Al - F(X\ A),

where again p = max;cx fp(i). In Lemma A.4 in Appendix A, we show that f is monotone
decreasing, supermodular, and nonnegative with curvature at most c. Again, note that the
construction of f requires n initial queries to f, and each subsequent query to f can be
accomplished using only a single query to f.

We consider the problem min{f(A) : |[A| < n—k}. Let a = (1+ =e 1 —0), and assume
that some algorithm returns a solution A to this problem, satisfying f (A) <a- f (X \ Sopr)
with constant probability, evaluating f on only a polynomial number of sets. We run this
algorithm and then return the set S = X'\ A. Because f is monotone decreasing, we assume
without loss of generality that |A] = n — k and so |S| = k. Then, from the definition of f
and our assumption, we have (with constant probability)

T p) < a (2 p0on)) =a (LB psin) =a 22 1S

c

17

and so

£8)2 2 a0 12 psem)
(o5 s
e
4 1-c
:(1—6 + . -5) f(Sopr)-

Again, we have obtained S using only a polynomial number of value queries to f , and hence
only a polynomial number of queries to f, contradicting the information-theoretic hardness
result of Nemhauser and Wolsey [34]. O

8 Optimizing Monotone Nonnegative Functions with
Bounded Curvature

Now we consider the problem of maximizing (respectively, minimizing) an arbitrary mono-
tone increasing (respectively, monotone decreasing) nonnegative function f of bounded cur-
vature subject to a single matroid constraint. We do not require f to be supermodular or
submodular, but only that it have bounded curvature, in the following generalized sense.
Let f be an arbitrary monotone increasing or monotone decreasing function. We define
the curvature c of f as
¢=1—min min fs_(]) (5)
JEX STCX =] fr(j)
Note that in the case that f is either monotone increasing and submodular or monotone

decreasing and supermodular, the minimum of IsU) gver S and T is attained when § = X — J

and T'= (). Then (5) agrees with the standard c{gi("ljl)lition of curvature given in (1). Moreover,
if a monotone increasing f has curvature at most ¢ for some ¢ € [0, 1], then for any j € X,
and A, B C X — 7, we have

(1 =) fs(j) < fa(i)- (6)
Analogously, if a monotone decreasing function f has curvature at most ¢, then for any
jeXand A,B C X — j, we have

(=) fB(j) = fa(j)- (7)

Note that when ¢ = 0, (6) and (7) require f to be a linear function, while when ¢ = 1, they
require only that f is monotone increasing or monotone decreasing, respectively.

First, we consider the case in which we wish to maximize a monotone increasing function
f subject to a matroid constraint M = (X,Z). Suppose that we run the standard greedy
algorithm, which at each step adds to the current solution S the element e yielding the
largest marginal gain in f, subject to the constraint S +e € 7.

18

Theorem 8.1. Suppose that f : 2% — Rsq is a nonnegative, monotone increasing function
with curvature at most ¢ € [0,1], and M is a matroid. Let S € B(M) be the base produced
by the standard greedy mazimization algorithm on f and M, and let Sopr € B(M) be any
base of M. Then,

f(S) = (1 =) f(Sopr)-

Proof. Let k be rank of M. Let s; be the ith element picked by the greedy algorithm, and
let S; be the set containing the first ¢ elements picked by the greedy algorithm. We use the
bijection guaranteed by Lemma 5.1 to order the elements o; of Sopr so that S —s; +0; € Z
for all i € [k], and let O; = {o0; : 7 < i} be the set containing the first i elements of Sopr in
this ordering. Then,

(1= O (Sore) = (1= D) + (1 =) Y for_,(0)
k
<JW)+ 3 fs. (o)

S f(w) + Z f5i71(8i)
= f(9).

The first inequality follows from (6) and f(0) > 0. The last inequality is due to the fact that
Si—1+0; € Z but s; was chosen by the greedy maximization algorithm in the ith round. [

Similarly, we can consider the problem of finding a base of M that minimizes f. In this
setting, we again employ a greedy algorithm, but at each step choose the element e yielding
the smallest marginal gain in f, terminating only when no element can be added to the
current solution. We call this algorithm the standard greedy minimization algorithm.

Theorem 8.2. Suppose that f : 2% — Rsq is a nonnegative, monotone increasing function
with curvature at most ¢ € [0,1] and M is a matroid. Let S € B(M) be the base produced
by the standard greedy minimization algorithm on f and M, and let Sopy € B(M) be any
base of M. Then,
1
f(8) <

—1-c

f(Sopr).-

19

Proof. Let k., S;, s;, O;, and 0; be defined as in the proof of Theorem 8.1. Then,
k
F(Sorr) = F0)+ > fo.,(01)
i=1
k
> (1=)f@®) + (1 =) fs (o)
i=1

> (1= Af)+ 1 =) Y foi(s)
— (1-0)f(S).

As in the proof of Theorem 8.1, the first inequality follows from (6) and f()) > 0. The last
inequality is due to the fact that S;_; +0; € Z but s; was chosen by the greedy minimization
algorithm in the 7th round. O]

Now, we consider the case in which f is a monotone decreasing function. For any function
f 2% — Rsg, we define the function f* : 2% — Rsg by f*(S) = f(X \ S) for all S C X.
Then, since f is monotone decreasing, f* is monotone increasing. Moreover, the next lemma
shows that the curvature of f* is the same as that of f.

Lemma 8.3. Let f : 2% — Rsg be a nonnegative, monotone decreasing function with
curvature at most ¢ € [0,1], and define f*(S) = f(X \S) for all S C X. Then, f* is

nonnegative and increasing, and has curvature at most c.

Proof. The nonnegativity and monotonicity of f* follow immediately from that of f. Let us
consider the curvature of f*. From the definition of f*, we have:

fa() = f(X\(A+7) = fF(X\A) = —fx\a)(d),

for any A C X and j € X. Consider any j € X and S,T C X — j. Since f is monotone
decreasing with curvature at most ¢, (7) implies

fs0) = =Fx\sp0) 2 =(1 =) fx\aep(9) = (L=) fr (7).

Thus, fgg >(1—c)forallj€ X and 5,7 C X — j. 0
T

Given a matroid M, we consider the problem of finding a base of M minimizing f. This
problem is equivalent to finding a base of the dual matroid M* that minimizes f*. Similarly,
the problem of finding a base of M that maximizes f can be reduced to that of finding a
base of M* that maximizes f*. Since f* is monotone increasing with curvature no more
than that of f, we obtain the following corollaries of Theorems 8.1 and 8.2, show how to
employ the standard greedy algorithm to optimize monotone decreasing functions.

20

Corollary 8.4. Suppose that f is a monotone decreasing function with curvature at most
c € [0,1] and M is a matroid. Let S* € B(M*) be the base of M* produced by running the
standard greedy mazimization algorithm on f* and M*. Let Sopr € B(M) be any base of
M, SE =X\ Sopr, and S = X \ S* € B(M). Then,

f(S)=f7(5") =2 (1 = o) f*(S5er) = (1 = ¢) f (Sorr)-
Corollary 8.5. Suppose that f is a monotone decreasing function with curvature at most
c € [0,1] and M is a matroid. Let S* € B(M*) be the base of M* produced by running the
standard greedy minimization algorithm on f* and M*. Let Sopy € B(M) be any base of
M, SE =X\ Sopr, and S = X \ S* € B(M). Then,

f(S) = f7(5") < T/ (Sger) = ch(som)-

1

The approximation factors of 1 — ¢ and 1/(1 — ¢) respectively are best possible, given
curvature c¢. The hardness result for minimization follows from [23], where it is shown that
no algorithm using polynomially many value queries can achieve an approximation factor

nl 2—e¢

of p(n,e) = N i T for the problem min{f(S) : |S| > k}, where f is monotone

increasing (even submodular) of curvature ¢. This implies that for any constant § > 0, there
is no (1 /(1—c)+ 6)—approximation algorithm using polynomially many value queries for this
problem. Next, we prove the hardness result for maximization; this proof is based on known
hardness constructions for maximization of XOS functions [15, 33]. Similar techniques have
also been used to derive hardness results for minimization [21].

Theorem 8.6. For any constant ¢ € (0,1) and 6 > 0, there is no (1 — ¢+ 0)-approximation
using polynomially many queries for the problem max{f(S) : |S| < k} where f is monotone
increasing of curvature c.

Proof. Fix c € (0,1), |X| =n and let Sopr € X be a random subset of size k = n'/? (assume
k is an integer). We define the following functions:

£(8) = (1=0)[S] + ¢ max{n'/?,|S| - n ™% [S N Sopr|}
g(S)=(1-¢)|S|+ c~max{n1/3, |S] -n_l/ﬁ}

The marginal values of f and g are always between 1 —c and 1; therefore, each has curvature
c. We now argue that with high probability f(Q) = ¢(Q) for any given query @, and so no
deterministic algorithm can distinguish between f and g.

Formally, consider any fixed query Q. If |Q| < n'/?, we have f(Q) = (1 —¢)|Q|+cn'/? =
9(Q). We now show that if |Q] > n'/?, then with high probability |Q N Sepr| < |Q] - n1/°
and so again f(Q) = ¢(Q). Indeed since Sopy is a random n'/?-fraction of the ground set
and |Q| > n'/3, we have u := E[|Q N Sopr|] = |Q|/n'/? > n~1/5. Because Q is a random set
of size ezactly n'/?, the events {e € Sopr}eeq are not independent. However, these events
are negatively correlated and so we can still apply standard concentration results given by
the Chernoff bound (see e.g. [37, Section 3.2]). Specifically, we have

PHIQ 1 Soral > Q0] = PI{IQ N Soue] > 03] < e=28) < =),

21

Now, consider any deterministic algorithm and suppose that it makes a sequence of
polynomially many queries (01,)2, ... when applied to g. We also suppose, without loss of
generality, that it returns some queried set @); with |@Q;| < k. For all sufficiently large n,
with high probability we have ¢(@Q;) = f(Q;) for all i, by the above argument and a union
bound. Thus, the algorithm will make the same sequence of queries, when applied to f.
Moreover, for any queried set Q; with |Q;| < k we have f(Q;) = g(Q;) < (1 —c)n'/? 4 cn'/3.
On the other hand, f(Sopr) = |Sopr| = n'/2. Therefore with high probability over the
choice of Sepr the algorithm does not achieve better than a (1 — ¢ + o(1))-approximation.
For randomized algorithms, applying Yao’s minimax principle shows that no randomized

algorithm can achieve a better than (1 — ¢+ o(1))-approximation with constant probability.
[

Therefore, the approximation factors in Theorems 8.1 and 8.2 are optimal. Combining
these inapproximability results with Lemma 8.3 we obtain similar inapproximability results
showing the optimality of Corollary 8.4 and 8.5.

9 Applications

We now present two application of our algorithms.

9.1 Maximizing Subdeterminants and Maximum Entropy Sam-
pling

In this application, we are given a positive semidefinite matrix M € R™"™. Let M|S, S| be
a principal minor defined by the columns and rows indexed by the set S C {1,...,n}. In
the Maximum Entropy Sampling Problem (or, more precisely, in a generalization of that
problem) we would like to find a set |S| = k maximizing f(S) = Indet M[S, S]. It is well-
known that this set function f(5) is submodular.?

We consider the special case in which M has eigenvalues \;y > Ag--- > A\, > 1. We
show that in this case, the curvature of f is at most % Consider some index j, and let
i; denotes the ith largest eigenvalue of the submatrix M[X — j, X — j]. By the Cauchy
Interlacing Theorem, pu; < A; for all 1 < ¢ < n — 1. Then, since the determinant of any

matrix is just the product of its eigenvalues, we have:

n n—1 n n—1
i)y =m][N-W][m=m]][x-m][rx=hx.
=1 =1 =1 =1

This, together with submodularity of f, implies that f is non-decreasing. Since f(()) =
Inl = 0, f is also normalized, and non-negative. Now, let u; be the single eigenvalue of
M{j},{j}]- Then again by the Cauchy Interlacing Theorem p; < A, and we have

foi) =Inp —Inl =Iny; <lIn).

3See, for example, [24]; many earlier and alternative proofs of that fact are known, as well.

22

¢ MA—lnd,) _ Iy

= TV It follows from Theorem 6.1 that we
nAi n A1

Thus, f has curvature at mos

1— M) i_ O(e))—approximation for the problem maxger Indet M[S, 5],

obtain a <1 — <) e

even in the case that Z is a general matroid constraint.

9.2 The Column-Subset Selection Problem

Let A be an m x n real matrix. We denote the columns of A by cy,...,c,. Le., for x € R",
Ax =) x;c;. The (squared) Frobenius norm of A is defined as

n
A7 =D al =D lleill”,
i, i=1

where here, and throughout this section, we use ||-|| to denote the standard, ¢, vector norm.
For a matrix A with independent columns, the condition number is defined as

_ SUpP|x|=1 | Ax|
inf =1 || Ax|]

If the columns of A are dependent, then k(A) = oo (there is a nonzero vector x such that
Ax =0).
Given a matrix A with columns ¢y, ..., c,, and a subset S C [n], we denote by

prOjS(X) = argminyESpan({ciziES}) HX - y”

the projection of x onto the subspace spanned by the respective columns of A. Given S C [n],
it is easy to see that the matrix A(S) with columns spanned by {c; : i € S} that is closest
to A in squared Frobenius norm is A(S) = (projg(c1), projs(ca), . . ., projg(c,)). The distance
between the two matrices is thus

1A= A7 =) e — projs(ed)1*
i=1

We define f4 : 2"l — R to be this quantity as a function of S:

n

FA(S) = Z lle: = projs(e)[I* = > (lleal® — llprojs(ea)lI?).

=1

where the final equality follows from the fact that projg(c;) and c; — projg(c;) are orthogonal.

Given a matrix A € R™*" and an integer k, the Column-Subset Selection Problem
(CSSP) is to select a subset S of k columns of A so as to minimize f4(S). It follows from
standard properties of projection that f# is non-increasing, and so CSSP is a special case
of non-increasing minimization subject to a cardinality constraint. We now show that the
curvature of f4 is related to the condition number of A.

23

Lemma 9.1. For any non-singular matriz A, the curvature c = c(f?) of the associated set
function fa satisfies

< K2(A).

1—-c¢
Proof. We want to prove that for any S and i ¢ S,

min | Ax|* < [£5(9)] < ma [} Ax] ®)
This implies that by varying the set S, a marginal value can change by at most a factor of
k%(A). Recall that the marginal values of f# are negative, but only the ratio matters so we
can consider the respective absolute values. The inequalities (8) imply that

T—c X stk [F())|

1 ’fé‘}(])‘ <K2(A).

We now prove the inequalities (8). Let v; g = ¢; — projg(c;) denote the component of c;
orthogonal to span(S). We have

/5 (D) = FA(S) = FA(S +1)

= 3= (Fes = prois(es)I* — e — projs.sfes) 1)
- Z (Ile = prois(e;)II* = lle; = prois(e;) — proi, , (e;)|)

= Z Iprojy, (eI
j=1

because projg(c;), proj,, .(c;) and c; — projg(c;) — proj,, .(c;) are orthogonal.
Our first goal is to show that if |fZ(i)| is large, then there is a unit vector x such that

|Ax|| is large. In particular let us define p; = (v;5-¢;)/||vis|l and z; = p;//>_,_, p;. We

have [|x|* = 3", #7 = 1. Multiplying by matrix A, we obtain Ax = 7" | x;c;. We can

estimate || Ax|| as follows:

7=1

n
Vis (Ax) = v, g Z x;c;

j=1

ks
_Zmn i,S”

24

By the Cauchy-Schwartz inequality, this implies that || Ax|| > /3" p? = /[f§(1)].

On the other hand, using the expression above, we have

/5 @] =D llproly, (c;)[I* > llprojy, s (e)I” = [Ivs|®
j=1

since v; g = ¢; — projg(c;) is the component of ¢; orthogonal to span(S). We claim that if
|vi.s] is small, then there is a unit vector x’ such that ||Ax’|| is small. To this purpose, write
projs(c;) as a linear combination of the vectors {c; : j € S}: projg(c;) = 3 _ g y;c;. Finally,
we define y; = —1, and normalize to obtain x' = y/||y|. We get the following:

1 1 -
IAX'| = —— | Ay || = — 1> wicll
Iyl Iyl <=

1
= ——|lprojs(c;) — |
yll

L vl
= 7 lIVisll-
Iyl

Since [ly[| > 1, and [[vis|| < /[f5(i)], we obtain | AX'|| < /|5 (i)]-

In summary, we have given two unit vectors x,x’ with ||Ax|| > /|f£(i)| and ||AX|| <

V| f£4(@)]. This proves that minj,—; [|Ax[|* < |4 (i)] < max)xj=1 || Ax]||?, as required. O

By Corollary 8.5, the standard greedy minimization algorithm is then a x%(A)-approximation
for the column-subset selection problem. The following lemma shows that Lemma 9.1 is
asymptotically tight.

Lemma 9.2. There exists a matriz A with condition number k for which the associated
function f4 has curvature 1 — O(1/K?).

Let us denote by distg(x) the distance from x to the subspace spanned by the columns
corresponding to S.

dists(x) = [|Ix — projs(x)|| = minyespan(fe;icsy [[x = ¥-

For some € > 0, consider A = (cy,...,c,) where ¢c; = e; and ¢; = ee; + e, for j > 2. A
similar example was used in [3] for a lower bound on column-subset approximation. Here,
e; is the i-th canonical basis vector in R™. We claim that the condition number of A is

k= O(max{1,e*(n —1)}), while the curvature of f%is 1 — O(—ra—=) = 1 — O(%).

max{1,e*(n—1)2}
To bound the condition number, consider a unit vector x. We have

Ax = <(I1—|—€Zl’i), To, T3,. .., :cn>

=2

25

and

|Ax||? = x1+62x2 Zi

1=2
We need a lower bound and an upper bound on ||Ax||, assuming that ||x|| = 1. On the one
hand, by the above identity and the Cauchy-Schwartz inequality, we have

IAX|[> < 1+ (21 + € Y a;)* < 1+ (14 €(n — 1)) = O(max{1,¢’(n — 1)}).

=2

On the other hand, to get a lower bound if 2y <1/2, then ||Ax[|? > > " a7 =1—21 > 3.
If 2y > 1/2, then either Y., |z;| < £, in which case

- 1
Ax|* > N2> =
IAx|* 2 (@ + 3w 2 g5,

or Y i,z > i in which case by convexity we get

Zx 16¢2(n—l)

So, in all cases ||Ax||> = Q(1/ max{1,e*(n — 1)}). This means that the condition number of
Ais k= O(max{l,e*(n — 1)}).

To lower-bound the curvature of 4, consider the first column ¢; and let us estimate the
magnitudes of f;'(1) and f[n \13(1). We have

D] = llel® + D llproj (e))|> = 1+ €(n — 1).
j=2

On the other side,

|f[fl]\{1}(1)| = |1 — proj[n]\{l}clﬂ (distp, \{1}<C1)) .

We exhibit a linear combination of the columns c»,...,c, which is close to c;. Let y =

e(nl—l) Z;’LZQ C;. We obtain

B 1

disty, < =) = ——.
it 1y (c1) < [ler —yll = -)H()l Py

Alternatively, we can also pick y = 0 which shows that dist,)\(13(c1) < [|c1]] = 1. So we
have

| . 1 |
oy (D] = (@isty(e)” < min {1’ = 1)} = (L2 =D}

We conclude that the curvature of f4 is at least

L= max{l,e41(n Ty O (%) '

26

Acknowledgments.

The authors thank Christos Boutsidis for suggesting a connection between curvature and
condition number and Wenxin Li for pointing out an issue in an earlier version of our proof
of Theorem 8. Justin Ward was supported by ERC Starting Grant 335288-OptApprox and
EPSRC grant EP/J021814/1.

References

1]

[10]

Alexander Ageev and Maxim Sviridenko. Pipage rounding: A new method of construct-
ing algorithms with proven performance guarantee. J. Combinatorial Optimization,
8(3):307-328, 2004.

Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wlley & Sons, 2nd
edition, 2000.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-
based matrix reconstruction. SIAM J. Comput., 43(2):687-717, 2014.

Richard A Brualdi. Comments on bases in dependence structures. Bull. of the Australian
Math. Soc., 1(02):161-167, 1969.

Gruia Calinescu, Chandra Chekuri, Martin P4al, and Jan Vondrak. Maximizing a sub-

modular set function subject to a matroid constraint (extended abstract). In Proc. 12th
IPCO, pages 182-196, 2007.

Gruia Calinescu, Chandra Chekuri, Martin P4al, and Jan Vondrak. Maximizing a sub-
modular set function subject to a matroid constraint. SIAM J. Comput., 40(6):1740—
1766, 2011.

Ali Civril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix of
a matrix and related problems. Theoretical Computer Science, 410(47-49):4801-4811,
November 2009.

Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding
via exchange properties of combinatorial structures. In Proc. 51st FOCS, pages 575-584,
2010.

Chandra Chekuri, Jan Vondrék, and Rico Zenklusen. Multi-budgeted matchings and
matroid intersection via dependent rounding. In Proc. 22nd SODA, pages 10801097,
2011.

Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Submodular function maximiza-

tion via the multilinear relaxation and contention resolution schemes. In Proc. 43rd
STOC, pages 783-792, 2011.

27

[11]

[21]

[22]

[23]

[24]

Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and
the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-
Edmonds theorem. Discrete Applied Mathematics, 7(3):251-274, 1984.

Amit Deshpande and Luis Rademacher. FEfficient volume sampling for row/column
subset selection. In Proc. 51st FOCS, pages 329-338, 2010.

Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix
approximation. In Proc. 9th APPROX, pages 292-303. Springer, 2006.

S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combinatorial
auctions with complement-free bidders. In Proc. 37th STOC, pages 610-618, 2005.

Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for
combinatorial auctions with submodular bidders. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida,
USA, January 22-26, 2006, pages 1064-1073, 2006.

Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming,
1(1):127-136, 1971.

Uriel Feige. A threshold of In n for approximating set cover. J. ACM, 45:634—652, 1998.

Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy
algorithm for submodular maximization. In Proc. 52nd FOCS, pages 570-579, 2011.

Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid
via non-oblivious local search. SIAM J. Comput., 43(2):514-542, 2014.

M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. An analysis of approximations for
maximizing submodular set functions—II. Mathematical Programming Studies, 8:73—
87, 1978.

Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability
of combinatorial problems with multi-agent submodular cost functions. In Proc. 50th
FOCS, pages 755-764. IEEE, 2009.

Victor P. [I’ev. An approximation guarantee of the greedy descent algorithm for mini-
mizing a supermodular set function. Discrete Applied Mathematics, 114(1-3):131-146,
October 2001.

R. Iyer, S. Jegelka, and J. Bilmes. Curvature and optimal algorithms for learning and
minimizing submodular functions. In In Neural Information Processing Society (NIPS),
Lake Tahoe, CA,, 2013.

A K. Kelmans. Multiplicative submodularity of a matrix’s principal minor as a function
of the set of its rows. Discrete Mathematics, 44(1):113-116, 1983.

28

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the spread of influence
through a social network. In Proc. 9th KDD, pages 137146, 2003.

C.W. Ko, Jon Lee, and Maurice Queyranne. An exact algorithm for maximum entropy
sampling. Operations Research, 43(4):684-691, 1996.

A. Krause and C. Guestrin. Submodularity and its applications in optimized information
gathering. ACM Trans. on Intelligent Systems and Technology, 2(4):32, 2011.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements:
maximizing information while minimizing communication cost. In Proc. 5th IPSN, pages
2-10, 2006.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. J. Machine Learning
Research, 9:235-284, 2008.

Andreas Krause, Ram Rajagopal, Anupam Gupta, and Carlos Guestrin. Simultaneous
placement and scheduling of sensors. In Proc. §th IPSN, pages 181-192, 2009.

Jon Lee. Maximum entropy sampling. Encyclopedia of Environmetrics, 3:1229-1234,
2002.

B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55:1884-1899, 2006.

Vahab S. Mirrokni, Michael Schapira, and Jan Vondrak. Tight information-theoretic
lower bounds for welfare maximization in combinatorial auctions. In Proceedings 9th
ACM Conference on Electronic Commerce (EC-2008), Chicago, IL, USA, June 8-12,
2008, pages 7077, 2008.

G.L. Nemhauser and L.A. Wolsey. Best algorithms for approximating the maximum of
a submodular set function. Mathematics of Operations Research, 3(3):177-188, 1978.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for
maximizing submodular set functions—I. Mathematical Programming, 14(1):265-294,
1978.

Aleksandar Nikolov. Randomized rounding for the largest simplex problem. In Proc.
47th STOC, pages 861-870. ACM, 2015.

Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via
an extension of the chernoff-hoeffding bounds. SIAM Journal on Computing, 26(2):350—
368, 1997.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

29

[39] Marco Di Summa, Friedrich Eisenbrand, Yuri Faenza, and Carsten Moldenhauer. On
largest volume simplices and sub-determinants. In Proc. 26th SODA, SODA 15, pages
315-323. Society for Industrial and Applied Mathematics, 2015.

[40] Jan Vondrak. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proc. 40th STOC, pages 67-74, 2008.

[41] Jan Vondrak. Submodularity and curvature: the optimal algorithm. In RIMS Kokyuroku
Bessatsu, volume B23, pages 253-266, Kyoto, 2010.

A Proofs and Claims Omitted from the Main Body

Lemma 2.1. If f : 2% — Ryq is a normalized, monotone increasing submodular function
with total curvature at most ¢, then 34 fx—j(j) = (1 —¢)f(A) for all AC X.

Proof. We order the elements of X arbitrarily, and let A; be the set containing all those
elements of A that precede the element j. Then, >, fa,(j) = f(A) — f(0). From the
definition of curvature, we have

fx-i0)

c>1———=
- fo(5)
which, since fp(j) > 0, is equivalent to
fx-3(7) =2 (1 =) fa(j), for each j € A.

Because f is submodular, we have fy(j) > fa,(j) for all j, and so

D Sxi() 2 =) fol) = (L =) Y fa, () = (L=)lf(A) = fB)] = (1=) f(A),

jEA jeA jeA
where the final equality follows from the assumption that f is normalized. O

Lemma 2.2. If f : 2% — Ry is a normalized, monotone decreasing supermodular function
with total curvature at most ¢, then (1 —c¢) > i, fo(j) > —f(X\ A) for all AC X.

Proof. Order A arbitrarily, and let A; be the set of all elements in A that precede element j,
including j itself. Then, >4 fx\a,(j) = f(X) — f(X\A). From the definition of curvature,

we have .
c>1- foj.(J)’
fo(j)
which, since fy(j) < 0, is equivalent to
fx—3() < (1 =) fu(h).
Then, since f is supermodular, we have fx\4,(j) < fx—;(j) for all j € A, and so

L= o) =D Fxoili) =D o, (i) = F(X) = F(X\A) = —f(X\A),

JjEA JEA JEA

where the final equality follows from the assumption that f is normalized. n

30

Lemma A.1. Let f: 2%X — Ry be a normalized, monotone increasing submodular function
and define ((A) =34 fx—j(j) and g(A) = f(A) —€(A). Then, g is normalized, monotone
increasing and submodular.

Proof. The function ¢ is the sum of a submodular function f and a linear function —¢, and

so must be submodular. Moreover, since f is normalized g() = f(0) — ¢(0) = 0, so g is
normalized. For any j € X and A C X — j,

9a(j) = fa(j) = fx-;(4) = 0
since f is submodular. Thus, g is monotone increasing. O]
Lemma A.2. Let f : 2% — Rxq be a normalized, monotone-decreasing supermodular func-
tion and define £(A) = >4 fo(j) and g(A) = —l(A) — f(X\A). Then, g is normalized,
monotone increasing, and submodular.

Proof. We first show that g is monotone-increasing. Consider an arbitrary j € X and
A C X —j. Then,

9a(j) = g(A+j) — g(A)
= —U(A+7j) — fF((X\A) —j) +{(A) + f(X\A)
= —L(j) + fix\a)-;(J)

= —fo(j) + foana—i(4)

>0,

where the final inequality holds because f is supermodular. Moreover, since f is normalized,
we have g(0) = —f(X) = 0.

Finally, we show that g is submodular. Suppose A C B and j ¢ B. Then, (X\B) —j C
(X\A) — j and so, since f is supermodular, fix\p)—;(j) < fix\a)—;(j). Thus,

94(j) = —fo(j) + foaa—i(3) = —fo(d) + foam) i) = g8(J)- O

Lemma A.3. Let f be a normalized, monotone increasing submodular function, satisfying
fa(j) <p forallje X and AC X —j, and let ¢ € [0,1]. Define

1—c¢
'

Al p.

Then, f is normalized, monotone increasing, and submodular, and has curvature at most c.

Proof. Because f is the sum of a normalized, monotone increasing, submodular function and
a nonnegative linear function, must be normalized, monotone increasing, and submodular.
Furthermore, for any A C X and j € A, we have fa(j) = fa(j) + %p. Thus,

feogG) _ BesG)+55p BEep B
folG) PG+ TS ’
and so f has curvature at most c. O]

31

Lemma A.4. Let f be a normalized, monotone increasing submodular function, satisfying
fa(j) <p forall 3, A, and let c € [0,1]. Define:

F(A) =T 1X\A] = f(X\4).

Then, f is normalized, monotone decreasing, and supermodular, and has curvature at most
c.

Proof. Because f is submodular, so is f(X \ A), and hence —f(X \ A) is supermodular.
Thus, f is the sum of a supermodular function and a linear function and so is supermodular.
Moreover, f (X) =—f(0) =0, and so f is normalized. In order to see that f is decreasing,
we consider the marginal f4(j), which is equal to

X\ (A+5)] = FOO(A+5) = Z1X\A + FOOVA) = =2+ fryan() < —2 +p <0

Finally, we show that f has curvature at most c¢. We have:

folg) = —%9 +fx-0) = —g
fra) ==L+ foli) < L vp= "5
and therefore fx_;(5)/fo(j) <1—c. O

B Implementation of the Modified Continuous Greedy
Algorithm

Here we discuss the technical details of how the continuous greedy algorithm can be imple-
mented efficiently. There are two main issues that we ignored in our previous discussion:
(1) How do we “guess” the value of ¢(Sopr); (2) How discretize time efficiently and find a
suitable direction v(t) in each step of the algorithm. We address each in turn.

Guessing the value A\ = ((Sopt): Recall that |[((Sopr)| < no. We discretize the interval®
[—nd,nd] with O(¢7!) points of the form ie - © for —e™! < i < €', filling the interval
[—0, 9], together with O(e 'nlogn) points of the form (1 + ¢/n)*- 0 and —(1 + ¢/n) - o for
0 <i <logy ./, n, filling the intervals [0, n?] and [-nd, —?], respectively. We then run the
following algorithm using each point as a guess for A\, and return the best solution found.
Then, if [((Sopr)| < ©, we must have

e(SOPT) >\ > e(SOPT) —€-0,

4In the applications we consider £ is either nonnegative or non-positive, and so we need only consider half
of the given interval. For simplicity, here we give a general approach that does not depend on the sign of
£. In general, we have favored, whenever possible, simplicity in the analysis over obtaining the best runtime
bounds.

32

for some iteration (using one of the guesses in [—0,9]). If [{(Sopr)| > 0, consider the largest
guess \ satisfying £(Sopr) > A, If £(Sopr) > 0, we have X\ > £(Sopr) (1 + %)’1 > {(Sopr)(1 —
<) = {(Sopr) — £|0(Sopr)|. Similarly, if £(Sopr) < 0, we have X > £(Sopr)(1 + £)l(Sopr) =
{(Sopr) — £|€(Sopr)|. In both cases, we have

USorr) 2 A > USorr) = ~U(Sorr)] 2 (Sorr) — -5,

where the last inequality follows from the fact that |((Sopr)| < no. For the remainder of our
analysis we consider the iteration of the algorithm corresponding to this guess for A.

Discretizing time efficiently and finding a suitable direction in each step: These
details are addressed by using the same approach given Calinescu et al. [6]. That is, we
discretize time into 1/0 steps (for some appropriate small §) in exactly the same fashion as
[6]. Here, we discuss only the required modifications to their general analysis. To simplify
our notation, for any j € A C X, define g4(j) = 0 (recall that ga(j) was previously defined
only when j € A). Given our guess of A and a current solution x(t), we find an appropriate
direction v(t) in each time step ¢, and update z(t + 0) = z(t) + dv(t). At some time ¢,
suppose we set w. = E[gr()(e)] and then choose v(t) = max,ep, Y oy Vewe. Note that
this is simply a linear maximization problem over B(M) subject to an additional linear
constraint L(v) > A, and can be solved by the ellipsoid method, for example (or more
efficiently using other methods). Also, for our chosen guess of A, we have 15, € Py, so
D oeex VeWe = D ocg. We. Let OPT = g(Sepr). By submodularity and monotonicity of g,
we have OPT < g(R) + > g, gr(e) for any set R C X. Taking the expectation over a
random set R = R(x), we then obtain:

OPT < Elg(R(z) + 3 gra(©)] = Gl + 3 Elgnn(e)] < G+ 3 v,

This is precisely the guarantee given in Lemma 3.1 of [6]. Let k be the rank of M. By carrying
out the remainder of the analysis exactly as in [6] (see Lemmas 3.2, 3.3, and following remarks
on pp. 12-13), we obtain a polynomial-time algorithm that produces a fractional solution

(1) satisfying G(z(1)) > (1 =2 — £)Sopr > (1 — 1/€)g(Sopr) — O(€)0. Additionally, since L
is linear and each v(t) € Py, we have:

1/6
L(z(1)) = > SL(v(5i)) > A > £(O) — €b.

i=1

Combining our bounds on L and G we obtain

G(x(1)) + L(z(1)) = (1 = e7)g(Sorr) — €(Sorr) — O(e) - 0.

C Implementation of the Local Search Algorithm

Here we discuss the technical details of how the non-oblivious local search algorithm can be
implemented efficiently. We must address two remaining concerns: (1) how do we compute

33

¥ efficiently in polynomial time; and (2) how do we ensure that the search for improvements
converges to a local optimum in polynomial time? As in the case of the continuous greedy
algorithm, we can address these issues by using standard techniques, but we must be careful
since ¢ may take negative values. As in that case, we have not attempted to obtain the most
efficient possible running time analysis here, focusing instead on simplifying the arguments.

Estimating 1 efficiently: Although the definition of h requires evaluating g on a poten-
tially exponential number of sets, Filmus and Ward show that h can be estimated efficiently
using a sampling procedure:

Lemma C.1 ([19, Lemma 5.1, p. 525]). Let h(A) be an estimate of h(A) computed from
N=0(e2In*nln M) samples of g. Then,

Pr[|h(A) — h(A)| > € - h(A)] = O(M™).

We let {0(A) = h(A) + £(A) be an estimate of 1. Set § = < -9. We shall ensure that
QZ(A) differs from ¢ (A) by at most

€ €
- .(C. >__ - .
C-n?lnn C-g(A)nn > C -n?lnn

€
)= 'UZE‘Q(A)

€
n
Applying Lemma C.1, we can then ensure that

Pr(ly(A) —¥(A4)] > 8] = O(M),

by using ©(e2n! In*nln M) samples for each computation of 1. By the union bound, we
can ensure that [)(A) — 1(A)| < 6 holds with high probability for all sets A considered by
the algorithm, by setting M appropriately. In particular, if we evaluate zﬁ on any polynomial
number of distinct sets A, it suffices to make M polynomially small, which requires only a
polynomial number of samples for each evaluation.

Bounding the convergence time of the algorithm: We initialize our search with an
arbitrary base Sy € B(M), and at each step of the algorithm, we restrict our search to those
improvements that yield a significant increase in the value of 1. Specifically, we require that
each improvement increases the current value of ¢ by at least an additive term 6 = = - 0.
We now bound the total number of improvements made by the algorithm.

We suppose that all values @Z(A) computed by the algorithm satisfy
W(A) =6 <P(A) <Y(A) +36.

From the previous discussion, we can ensure that this is indeed the case with high probability.
Let Sy, = argmaxaep(m) ¥(A). Then, by assumption, we must have ¢(S) < ¢(S5) + 0 <
(Sy) + 6 for every current solution S in the algorithm. The total number of improvements

34

applied by the algorithm is at most:

$(0(90) +0 = 9(S0)) < 5((Sy) — $(So) +20)
= 5((1 =€) (h(Sy) = h(So)) + £(Sy) — £(So) + 20)
< 5((L =€) h(Sy) + [£(Sy)] + 1€(So)] + 20)
< H(1—) Cog(Sy) nm -+ (Sy)] + £(S0) | + 20)
< %((1 - 6_1) C-o-nlnn+n-0+n-0+29)
= O(e 'n*Inn).

Each improvement step requires O(n?) evaluations of 1. From the discussion in the previ-
ous section, setting M sufficiently high will ensures that all of the estimates made for the
first ©(e 'n?Inn) iterations will satisfy our assumptions with high probability, and so the
algorithm will converge in polynomial time with high probability.

In order to obtain a deterministic bound on the running time of the algorithm we simply
terminate our search if it has not converged in ©(¢ 'n?Inn) steps and return the current
solution. With high probability the resulting algorithm will converge before this, in which
case we will have 9)(S) — (S — s; + 0;) < & for every i € [k]. Then,

k

STI(S) — (S — si +0,)] < k(8 +26) < 3¢

=1

From Lemma 5.2, the set S produced by the algorithm then satisfies
g(S) +L(S) = (1 — e_l)g(SOPT) + £(Sopr) — O(e) - 0,

as required by Theorem 3.1.

D Hardness Construction for Randomized Algorithms

Here we review the value-query hardness construction of Nemhauser and Wolsey [34] that is
used in our inapproximability results from Section 7, and show how their result can easily be
extended to randomized algorithms. Rather than repeating the full construction, we shall
refer the reader to specific relevant properties and lemmas wherever possible.

Consider the problem of finding a set S (approximately) maximizing a normalized, mono-
tone increasing, submodular function f : 2% — Ry subject to the constraint that S| < k.
Foreach k > 2, r <k—1,andn > 3(k—1r)+r —2, Nemhauser and Wolsey [34] show
how to construct a submodular monotone 1ncreas1ng function v - 2X R>¢, where X is
a set of n elements. For all S, the value of v¥(S) depends only on |S| and |S N M|, where
M 1is some fixed set of “special” elements. Consider any k£ and r satisfying 2 < r < k, and
let p = (k —r + 1)*7". Then, for all n, the associated function v* satisfies the following
properties, given in [34]:

o v¥(0) =0 [34, eq. 3.7, p. 181]

35

o max{v*(S): |S| < k} = v,.(M) = kp [34, Property 3, p. 180]
o vF({e}) — vk (D) = p for every e € X [34, eq. 3.8, p. 181]

Thus, every vF is normalized, and satisfies the additional property v¥(Sopr) = kp required
in Section 7. Intuitively, the construction of [34] is designed so that in order to find a good
approximate maximizer for v¥, we need to find a set S such that |S N M| is large. However,
they show [34, p. 180] that (by construction) the value of v¥ does not reveal any information
about M unless r < |SN M| < 3(k —r)+r — 2. Hence, if we are given only a value oracle
to v¥, determining M requires making a large number of value queries.

Formally, they define o), =1 — (kgr) (kgizl
Then, they show that, because of the above properties of v*, the number of function values
required to approximate max{v¥(S) : |S| < k} to within a factor of aj ! is at least the
number of queries required to solve the following simple, combinatorial problem [34, Lemma

4.1, p. 182]:

k—r
) to be some desired approximation ratio.

Find a set S C X with | X| < 3(k —r)+r —2, such that |SN M| > r+ 1, where M is
unknown, and if a set S is proposed, we are informed whether S is a solution of the (9)
problem or not.

By combinatorial arguments, Nemhauser and Wolsey then show that for any polynomial
number of fixed queries in (9), there exists some M so that |Q N M| < r for every query
Q. Here, we proceed by choosing M randomly and arguing that any deterministic algorithm
making a polynomial number of queries in (9) has |Q N M| < r for every query) with high
probability.

To this end, we fix the parameters k = n®7 and r = n?7 — 1, and let M be a random set
of k elements. We have r +1 = n?7 and 3(k —7) +7r—2 < 3n*7. Note that for this choice of
parameters, we have lim,, ., a’,;_l = 1—1/e. Thus, suppose that we have chosen n sufficiently
large so that o) ' < 1 —1/e + . Fix some constant ¢ > 0. We now show that with high
probability any deterministically chosen sequence of n? queries in (9) will have |Q N M| <r
for every query Q. Thus (by [34, Lemma 4.1]) no deterministic algorithm can attain a o} *
approximation for max{v*(S) : |S| < k} with constant probability. Applying Yao’s principle,
we then have that no randomized algorithm can attain an a};_l—approximation with constant
probability in the worst case.

In order to prove our claim, we consider some queried set () in problem (9). For each
e € Q,let Y, € {0,1} be an indicator variable for the random event e € QN M. Then, for all
e € Q we have E[Y,] = n™*7 since M is a set of n?/7 elements chosen uniformly at random
from X. If |Q| <r+1or|Q| >3(k—r)+r—2, then @ is never a solution to (9). For any
other proposed set @, let u=E[[QNM|[] =E[_ ., Ye]. Then, we have n=27T < < 3nVT,

Moreover, [QN M| > r+1 only if [QVM| > p(1+9), where § = - —1 > %/7. Note that
because M is a uniformly random set of size exactly r, the variables Y, are not independent.
However, we observe that they are negatively correlated. Thus, we can still apply standard

concentration results given by the Chernoff bound (see e.g. [37, Section 3.2]). Specifically,

36

we have that Pr{|Q N M| >r+1] < Pr[}_ ., Ye > p(1+0)] is at most

o n n _n1/7

e 3 <e” 12 —e 12 < 1/n_(q+1)

for any constant ¢ and all sufficiently large n.

Now, consider some deterministic algorithm for problem (9) that queries some polynomial
number n? of sets in problem (9). The sequence of sets that the algorithm queries depends
only whether each set is a solution of (9) or not. With probability at least n~(@*1) this is
the case for any given query). Thus, by the union bound, with probability at least 1 —1/n
the algorithm will receive a “no” answer for every queried set, and so will always query the
same sequence of sets. In particular, it never queries a set that is a solution to (9), and so
cannot attain an aj '-approximation.

37

	Introduction
	Our Contribution
	Applications
	Related Work

	Preliminaries
	Submodularity and Supermodularity
	Matroids
	Lemmas for Functions with Bounded Curvature

	Submodular + Linear Maximization
	A Modified Continuous Greedy Algorithm
	Non-Oblivious Local Search
	Submodular Maximization and Supermodular Minimization
	Submodular Maximization
	Supermodular Minimization

	Inapproximability Results
	Optimizing Monotone Nonnegative Functions with Bounded Curvature
	Applications
	Maximizing Subdeterminants and Maximum Entropy Sampling
	The Column-Subset Selection Problem

	Proofs and Claims Omitted from the Main Body
	Implementation of the Modified Continuous Greedy Algorithm
	Implementation of the Local Search Algorithm
	Hardness Construction for Randomized Algorithms

