
Submodular Stochastic Probing on Matroids

Marek Adamczyk1, Maxim Sviridenko2, and Justin Ward3

1Department of Computer, Control and Management Engineering, Sapienza
University of Rome, 00185 Rome, Italy, adamczyk@dis.uniroma1.it

2Yahoo! Labs, New York, NY 10036-3982, sviri@yahoo-inc.com
3Department of Computer Science, University of Warwick, Coventry CV4

7AL, United Kingdom, J.D.Ward@warwick.ac.uk

August 17, 2017

Abstract

In a stochastic probing problem we are given a universe E, and a probability pe
that each element e ∈ E is active. We determine if an element is active by probing
it, and whenever a probed element is active, we must permanently include it in our
solution. Moreover, throughout the process we need to obey inner constraints on
the set of elements taken into the solution, and outer constraints on the set of all
probed elements. All previous algorithmic results in this framework have considered
only the problem of maximizing a linear function of the active elements. In this paper
we generalize the stochastic probing problem by providing the first constant factor
approximation for maximizing a monotone submodular objective function.

For any T ∈ (0, 1], we give a (1 − e−T − o(1))/(T (kin + kout) + 1)-approximation
for the case in which we are given kin ≥ 0 matroids as inner constraints and kout ≥ 1
matroids as outer constraints. For k = kin + kout ≥ 1, we show that the optimal value
for T is given by T = −1 − 1

k − W−1(−e−1− 1
k ) ≈

√
2/k − 1/(3k), where W is the

Lambert W function. We also obtain an improved 1/(kin + kout)-approximation for
linear objective functions.

1 Introduction

Uncertainty in input data is a common feature of most practical problems, and research
in finding good solutions (both experimental and theoretical) for such problems has a long
history dating back to 1950 [8, 19]. We consider adaptive stochastic optimization problems in
the framework of Dean et al. [21]. Here the solution is in fact a process, and the optimal one
might even require larger than polynomial space to describe. Since the work of Dean et al.
a number of such problems were introduced [15, 25, 28, 29, 6, 30, 20].
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Recently, Gupta and Nagarajan [31] have given an abstract stochastic probing framework,
which captures several adaptive stochastic problems and gives a unified view for Stochastic
Matching [15] and Sequential Posted Pricing [11]. In their framework, we are given a universe
E, where each element e ∈ E is active with probability pe ∈ [0, 1] independently. The only
way to find out if an element is active, is to probe it. We call a probe successful if an element
turns out to be active. On universe E, we execute an algorithm that probes the elements one-
by-one. If an element is active, the algorithm must add it to the current solution. In this way,
the algorithm gradually constructs a solution consisting of active elements. A key feature of
the stochastic probing framework is the presence of two distinct types of constraints: a set
of inner constraints, which restrict the elements that may be added to the current solution,
after a successful probe, and a set of outer constraints, which restrict the elements that may
be probed. As noted by Gupta and Nagarajan [31], these outer constraints, which must
be enforced regardless of the outcome of a probe, are responsible for the richness of the
framework.

1.1 Our results

Formally, we consider the problem in which we are given two independence systems of
downward-closed sets: an outer independence system (E, Iout) restricting the set of ele-
ments probed by the algorithm, and an inner independence system (E, I in), restricting the
set of elements taken by the algorithm. Gupta and Nagarajan [31] considered many types
of systems I in and Iout. Here, we focus on matroid intersections, i.e. on the special case in
which I in is an intersection of kin matroids Min

1 , . . . ,Min
kin , and Iout is an intersection of

kout matroids Mout
1 , . . . ,Mout

kout . We always assume that kout ≥ 1 and kin ≥ 0.
Gupta and Nagarajan considered the case of weighted maximization, in which the goal

is to obtain a probing policy that respects the inner and outer constraints and produces a
solution that maximizes some linear function of the selected elements. Here we consider the
generalized problem of optimizing a submodular function in the stochastic probing frame-
work, subject to inner and outer matroid constraints. We provide the first constant-factor
guarantees for this general problem.

Our main result is a new algorithm for the stochastic probing problem based on iterative
randomized rounding of linear programs and the continuous greedy algorithm introduced by
Vondrák [41] and further analyzed by Călinescu et al. [17]. We show that a novel, iterative,
randomized rounding algorithm combined with the continuous greedy algorithm gives a

1−e−T−o(1)
T (kout+kin)+1

-approximation for maximizing a monotone submodular objective function in

a stochastic probing problem of the sort described above, where T ∈ (0, 1] is the time
at which the continuous greedy algorithm is stopped. By running the continuous greedy

algorithm until T = 1 (as is standard) we obtain a 1−e−1−o(1)
kout+kin+1

-approximation. However,

we show that for k = kout + kin > 1, the optimal value of the stopping time is given by

T = −1− 1
k
−W−1(−e−1− 1

k ) ≈
√

2
k
− 1

3k
, where W is the Lambert W function.

Additionally, we improve the bound of 1
4(kin+kout)

given by Gupta and Nagarajan [31] in
the case of a linear objective. Specifically, we show that our iterative randomized round-
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ing algorithm is a 1
kin+kout

-approximation for the stochastic probing problem with a linear
objective function.

Finally, we show how our results may be generalized to include matchoid constraints,
which generalize matchings in non-bipartite graphs.

1.2 Related work

The (offline) problem of maximizing a monotone submodular function subject to a cardinality
constraint was studied by Nemhauser, Fisher, and Wolsey [37], who showed that the standard
greedy algorithm is a 1− 1/e. Later Nemhauser and Wolsey [36] showed that any algorithm
guaranteeing a 1− 1/e+ ε-approximate solution must evaluate the submodular function on
a super-polynomial number of sets. Feige [22] considered a particular class of monotone
submodular functions, given explicitly as coverage functions. He showed that even in this
case, it is impossible to obtain a 1 − 1/e + ε-approximation algorithm for maximization
subject to a single cardinality constraint, unless P = NP .

Fisher, Nemhauser, and Wolsey [24] showed that the standard greedy algorithm is only a
1/2-approximation for the problem of maximizing a monotone submodular function subject
to a single matroid constraint. Later, Călinescu et al. [17] gave a 1 − 1/e-approximation
algorithm for this problem, called the continuous greedy algorithm, originally developed by
Vondrák [41] for the submodular welfare problem. The algorithm first approximately solves
a continuous relaxation of the problem and then applies pipage rounding [2] to obtain an
integral solution. Later, more sophisticated rounding approaches were developed, which
handled various other constraints [12, 13], culminating in the development of contention
resolution schemes [14], which provide a general rounding framework for combining various
constraints. Here, we follow a similar direction, employing the continuous greedy algorithm
to obtain a fractional solution and then iteratively rounding it to obtain an integral solu-
tion. Although our iterative rounding procedure is based on combinatorial properties of the
underlying matroid constraints, as in [12, 13], the probing framework significantly compli-
cates matters. In contrast to the offline setting, our rounding procedure corresponds to the
iterative construction of a probing policy. Thus, it must cope with the outer constraints,
the uncertainty in the input data, and the constraint that an element must be chosen if it is
successfully probed. We show how to take all of these considerations into account to obtain
an adaptive iterative rounding procedure, which in each iteration selects the next element
to probe, given the outcomes of all previous iterations.

Recently, there has been increased interest in submodular maximization in the presence
of uncertainty. Radlinski, Kleinberg, and Joachims [38] considered online algorithms for
learning rankings, which is a special case of maximizing a coverage function subject to a car-
dinality constraint. More generally, Streeter and Golovin [40] have given an online algorithm
for a resource allocation problem that generalizes the problem of maximizing a monotone
submodular function subject to a knapsack constraint. They also give lower bounds on the
regret incurred by any online algorithm for this problem, and show that their algorithm’s
expected regret matches these bounds up to a logarithmic factor. Golovin and Krause [27]
introduced the notion of adaptive submodularity, which generalizes the standard definition of
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submodularity to adaptive planning problems, in which a feasible solution is a policy. They
show that if a cardinality constrained problem is adaptive submodular, then a variant of the
standard greedy algorithm is guaranteed to be constant-factor competitive with the optimal
policy. More recently [26], they have generalized their approach to the problem of maxi-
mizing an adaptive submodular function subject to several matroid constraints. Asadpour,
Nazerzadeh, and Saberi [6] considered submodular maximization in a stochastic setting in
which each item is a random variable taking a non-negative real value. The goal is to choose
a set of items that maximizes a submodular value function of the variables, subject to a
single matroid constraint. They show that the adaptivity gap, which is the worst-case ratio
between the expected values of an optimal adaptive and non-adaptive policy, is equal to e

e−1
,

and show how to obtain a non-adaptive policy whose value is at most (1− 1/e)2 times that
of the optimal adaptive policy. In recent work [5] parallel to our own they have shown how
to obtain in polynomial time, a non-adaptive policy that has value at least (1 − 1/e − ε)
times the best adaptive policy, by utilizing the same improved bounds for the continuous
greedy algorithm that we present in Appendix A. Their general approach is similar to ours
in that they use a continuous relaxation f+ (see Section 2.2 for details) to bound the value
of the optimal adaptive policy. Their results then follow from the improved bound relating
the value of the fractional solution produced by continuous greedy algorithm to the optimal
value of f+. Their general setting allows for a more general class of value functions but does
not incorporate constraints on the elements that are probed. Thus, it may be viewed as a
generalization of ours in the special case that kout = 0 (i.e. that there are no outer matroid
constraints) and kin = 1. As our results hold only for kout ≥ 1, their work is complementary
to that presented here.

Agrawal et al. [3, 4] considered stochastic optimization problems in which unknown de-
mands may be correlated. They defined the correlation gap as the worst-case (over all
possible distributions and marginals values) of the ratio of the expected cost when a realiza-
tion is drawn from a distribution with some marginal values, to that of a random realization
drawn from an independent distribution with the same marginal values. They showed that
the correlation gap is bounded for a variety of functions. In particular, they show that for
submodular functions, the correlation gap is bounded is at most e

e−1
. Yan [44] considered

the correlation gap in the context of submodular maximization problems, in particular the
design of sequential posted pricing mechanisms. Here, as in our setting, each item may or
may not be present with some marginal probability and the correlation gap of f with respect
to a set of constraints measures the worst case ratio between the value of f on a random set
drawn from any distribution with some marginal values to the value of f on a random set
drawn from the independent distribution with these marginal values. In our setting, items
will always be active independently. However, we are interested in obtaining a near-optimal
policy for choosing items, and the set of choices made by the optimal policy will necessarily
be highly correlated. Thus, we must address similar issues to those raised in [3, 44]. We
discuss these issues in detail in Subsection 2.2.
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1.3 Applications

We now discuss two concrete applications of the stochastic probing framework, based on
stochastic matching and sequential posted pricing mechanisms, respectively.

On-line dating and related exchange problems [15] Consider an online dating ser-
vice. For each pair of users, machine learning algorithms estimate the probability that they
will form a happy couple. However, only after a pair meets do we know for sure if they were
successfully matched (and together leave the dating service). Users have individual patience
numbers that bound how many unsuccessful dates they are willing to go on until they will
leave the dating service forever. The objective of the service is to maximize the number of
successfully matched couples.

The related stochastic matching problem was introduced by Chen et al. [15], who showed
that the greedy strategy gives a 1/4-approximation for the unweighted case. The authors
also show that the simple greedy approach gives no constant approximation in the weighted
case. Their bound for the unweighted case was later improved to 1/2 by Adamczyk [1].
Bansal et al. [7] gave 1/3 and 1/4-approximations for weighted stochastic matching in bi-
partite and general graphs, respectively.

To model this as a stochastic probing problem, users are represented as vertices V of a
graph G = (V,E), where edges represent couples of users. Set E of edges is our universe
on which we make probes, with pe being the probability that a couple e = (u1, u2) forms a
happy couple after a date. The inner constraints are matching constraints — a user can be
in at most one couple —, and outer constraints are b–matching — we can probe at most
t (u) edges adjacent to user u, where t (u) denotes the patience of u. Both inner and outer
constraints are intersections of two matroids for bipartite graphs. In Section 5 we discuss a
generalization of our approach that allows us model matching constraints in non-bipartite
graphs, as well. In the weighted bipartite case, we obtain a 1/4-approximation.

Bayesian mechanism design [31] Consider the following mechanism design problem.
There are n agents and a single seller providing a certain service. Agent i’s value for receiving
service is vi, drawn independently from a distributionDi over set {0, 1, . . . , B}. The valuation
vi is private, but the distribution Di is known. The seller can provide service only for a subset
of agents that belongs to system I ∈ 2[n], which specifies feasibility constraints. A mechanism
accepts bids of agents, decides on a subset of agents to serve, and sets individual prices for
the service. A mechanism is called truthful if agents bid their true valuations. Myerson’s
theory of virtual valuations yields truthful mechanisms that maximize the expected revenue
of a seller, although they sometimes might be impractical. On the other hand, practical
mechanisms are often non-truthful.

The Sequential Posted Pricing Mechanism (SPM) introduced by Chawla et al. [11] and
subsequently studied by Yan [44], and Kleinberg and Weinberg [33] gives a nice trade-off
— it is truthful, simple to implement, and gives near-optimal revenue. An SPM offers each
agent a “take-it-or-leave-it” price for the service. Since after a refusal a service won’t be
provided, it is easy to see that an SPM is a truthful mechanism.
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To see an SPM as a stochastic probing problem, we consider a universe E = [n] ×
{0, 1, . . . , B}, where element (i, c) represents an offer of price c to agent i. The probability
that i accepts the offer is P [vi ≥ c], and the seller earns c then. Obviously, we can make
only one offer to an agent, so outer constraints are given by a partition matroid; making at
most one probe per agent also overcomes the problem that probes of (i, 1) , ..., (i, B) are not
independent. The inner constraints on universe [n] × {0, 1, . . . , B} are simply induced by
constraints I on [n].

Using this reduction, Gupta and Nagarajan [31] gave an LP relaxation for any single-
seller Bayesian mechanism design problem. Provided that we can optimize over P (I), the
LP can be used to construct an efficient SPM. Moreover, the approximation guarantee of the
constructed SPM is with respect to the optimal mechanism, which needs not be an SPM.

In the case where constraints I are an intersection of k matroids the resulting SPM is
a 1

4(k+1)
-approximation [31]. Here, we give an improved approximation algorithm with a

factor- 1
k+1

guarantee. In particular, when k = 1 we obtain a 1/2-approximating, matching
previous results [11, 33].

2 Preliminaries

For set S ⊆ E and element e ∈ E we use S + e to denote S ∪ {e}, and S − e to denote
S \{e}. For set S ⊆ E we shall denote by 1S a characteristic vector of set S, and for a single
element e we shall write 1e instead of 1{e}.

2.1 Matroids and polytopes

Let M = (E, I) be a matroid, where E is the universe of elements and I ⊆ 2E is a family
of independent sets. For element e ∈ E, we shall denote the matroid M with e contracted
by M/e, i.e. M/e = (E − e, {S ⊆ E − e | S + e ∈ I}).

The following lemma is a slightly modified1 basis exchange lemma, which can be found
in [39].

Lemma 2.1. Let A,B ∈ I and |A| = |B|. There exists a bijection φ : A→ B such that: 1)
φ (e) = e for every e ∈ A ∩B, 2) B − φ (e) + e ∈ I.

We shall use the following corollary, where we consider independent sets of possibly
different sizes.

Corollary 2.2. Let A,B ∈ I. We can find assignment φA,B : A 7→ B ∪ {⊥} such that:

1. φA,B (e) = e for every e ∈ A ∩B,

2. for each f ∈ B there exists at most one e ∈ A for which φA,B (e) = f ,

3. for e ∈ A \B, if φA,B (e) = ⊥ then B + e ∈ I, otherwise B − φA,B (e) + e ∈ I.

1The difference is that we do not assume that A,B are bases, but independent sets of the same size.
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Proof. Suppose |A| ≥ |B|. We use the matroid augmentation property a sufficient number
of times to extend B into B′ ∈ I with |B′| = |A| using elements of A \B. From Lemma 2.1
we get a bijection φ : A 7→ B′. For each e ∈ A, we set φA,B (e) =⊥, if φ (e) ∈ B′ \ B, and
φA,B (e) = φ (e) otherwise. Case |A| ≤ |B| is similar.

We consider optimization over matroid polytopes which have the general form:

P (M) =

{
x ∈ RE

≥0

∣∣∣∣∣∀A∈I∑
e∈A

xe ≤ rM (A)

}
,

where rM is the rank function of M. We know (see, e.g. [39]) that the matroid polytope
P (M) is equivalent to the convex hull of {1A | A ∈ I}, i.e. characteristic vectors of all
independent sets of M. Thus, we can represent any x ∈ P (M) as x =

∑m
i=1 βi · 1Bi , where

B1, . . . , Bm ∈ I and β1, . . . , βm are non-negative weights such that
∑m

i=1 βi = 1 . We shall
call sets B1, . . . , Bm a support of x in P (M). Cunningham [18] showed that membership in a
matroid polytope can be decided in strongly-polynomial time. Moreover, for any x ∈ P (M),
Cunningham’s algorithm returns the representation

∑m
i=1 βi ·1Bi in strongly polynomial time.

2.2 Submodular functions

A set function f : 2E 7→ R≥0 is submodular, if for any two subsets S, T ⊆ E we have
f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ). We call function f monotone, if for any two subsets
S ⊆ T ⊆ E : f (S) ≤ f (T ). Without loss of generality, we shall assume that f (∅) = 0. We
let fS(e) = f(S + e) − f(S). Then, f is submodular if and only if it has the property of
diminishing returns : fT (e) ≤ fS(e) for all S ⊆ T , and e 6∈ T .

2.2.1 Multilinear extension

We consider the multilinear extension F : [0, 1]E 7→ R≥0 of f , whose value at a point
y ∈ [0, 1]E is given by

F (y) =
∑
A⊆E

f(A)
∏
e∈A

ye
∏
e 6∈A

(1− ye).

Note that F (1A) = f (A) for any set A ⊆ E, so F is an extension of f from the discrete
domain 2E into a real domain [0, 1]E. For y ∈ [0, 1]E let R(y) denote a random subset A ⊆ E
that is constructed by taking each element e ∈ E independently with probability ye. Then,
F (y) = E[f(R(y))]. Following this interpretation, Călinescu et al. [17] show that F (y) can
be estimated to any desired accuracy in polynomial time by using a sampling procedure.

Additionally, they show that F has the following properties, which we shall make use of
in our analysis:

Lemma 2.3. The multilinear extension F is linear along the coordinates, i.e. for any point
x ∈ [0, 1]E, any element e ∈ E, and any ξ ∈ [−1, 1] such that x+ ξ ·1e ∈ [0, 1]E, it holds that
F (x+ ξ · 1e)−F (x) = ξ · ∂F

∂ye
(x), where ∂F

∂ye
(x) is the partial derivative of F in direction ye

at point x.
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Lemma 2.4. If F : [0, 1]E 7→ R is a multilinear extension of monotone submodular function
f : 2E 7→ R, then 1) function F has second partial derivatives everywhere; 2) for each e ∈ E,
∂F
∂ye
≥ 0 everywhere; 3) for any e1, e2 ∈ E (possibly equal), ∂2F

∂ye1∂ye2
≤ 0, which means that

∂F
∂ye2

is non-increasing with respect to ye1.

2.2.2 Continuous greedy algorithm

In [17] the authors utilized the multilinear extension in order to maximize a submodular
monotone function over a matroid constraint. They showed that the continuous greedy
algorithm finds a (1− 1/e)-approximate maximum of the above extension F over any solv-
able, downward closed polytope. In the special case of the matroid polytope, they show
how to apply pipage rounding [2] to the fractional solution to obtain an integral solution.
Later, Feldman et al. [23] developed the measured continuous greedy algorithm, which gives
improved approximations in a variety of cases. In the case of monotone submodular func-
tions, Feldman et al. show that stopping the measured continuous greedy algorithm at time
T ∈ [0, 1] yields a solution x satisfying F (x) ≥ (1 − e−T )OPT and x/T ∈ P , where OPT
is the optimal value attained by f on integral solutions in P . They note that these partic-
ular guarantees hold for the standard continuous greedy algorithm, as well. Because these
guarantees are sufficient for our purposes, we shall focus on the standard continuous greedy
algorithm.

Another extension of f studied in [9] is given by:

f+(y) = max

{∑
A⊆E

αAf(A)

∣∣∣∣∣∑
A⊆E

αA ≤ 1, ∀A ⊆ E : αA ≥ 0, ∀j ∈ E :
∑
A:j∈A

αA ≤ yj

}
(1)

Intuitively, the solution (αA)A⊆E above represents the distribution over 2E that maximizes
the value E[f(A)] subject to the constraint that its marginal values satisfy P [i ∈ A] ≤ yi.
The value f+(y) is then the value of E[f(A)] under this distribution, while the value of F (y)
is the value of E[f(A)] under the particular distribution that places each element i in A
independently. However, the following allows us to relate the value of F on the solution of
the continuous greedy algorithm to the optimal value of the relaxation f+.

Lemma 2.5. Let f be a submodular function with multilinear extension F , and let P be any
downward closed polytope. Let x be solution produced by the continuous greedy algorithm on
F and P until time T ∈ (0, 1]. Then:

1. x/T ∈ P.

2. F (x) ≥ (1− e−T − o(1)) maxy∈P f
+(y).

This follows from a simple modification of the continuous greedy analyses of [17], provided
by Vondrák [42], together with the observations from [23].
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2.3 Overview of the iterative randomized rounding approach

We now give a description of the general rounding approach that we employ in both the
linear and submodular case. We consider an instance of a stochastic probing problem, with
objective function f , outer matroid constraintsMout

j , where 1 ≤ j ≤ kout and inner matroid
constraints Min

j , where 1 ≤ j ≤ kin. Our rounding procedure is guided by the solution of
the following mathematical programming relaxation, where f+ is the relaxation given in (1):

maximize f+(p · x)

subject to: x ∈ P(Mout
j ), 1 ≤ j ≤ kout

p · x ∈ P(Min
j ), 1 ≤ j ≤ kin

x ∈ [0, 1]E (2)

We now show that the solution of the relaxation (2) is an upper bound on the expected value
of the optimal feasible strategy for the related stochastic probing problem. Henceforth, we
let x+ denote the optimal solution to (2).

Lemma 2.6. Let OPT be the optimal feasible strategy for the stochastic probing problem in
our general setting, then, E[f(OPT )] ≤ f+(p · x+).

Proof. We construct a feasible solution x of (2) by setting xe = P [OPT probes e]. First,
we show that this is indeed a feasible solution of (2). Since OPT is a feasible strategy, the
set of elements Q probed by any execution of OPT is always an independent set of each
outer matroid M = (E, Ioutj ), i.e. ∀j∈[kout]Q ∈ Ioutj . Thus, for any j ∈ [kout], the vector
E[1Q] = x may be represented as a convex combination of vectors from {1A | A ∈ Ioutj }, and
so x ∈ P(Mout

j ). Analogously, the set of elements S that were successfully probed by OPT
satisfy ∀j∈[kin]S ∈ I inj for every possible execution of OPT . Hence, for any j ∈ [kin] the vector
E[1S] = p · x may be represented as a convex combination of vectors from {1A | A ∈ I inj }
and so p · x ∈ P(Min

j ).
The value f+(p · x) gives the maximum value of ES∼D [f(S)] over all distributions D

satisfying PS∼D [e ∈ S] = xepe. The solution S returned by OPT satisfies P [e ∈ S] =
P [OPT probes e] pe = xepe. Thus, OPT defines one such distribution, and so we have
E[f(OPT )] ≤ f+(p · x) ≤ f+(p · x+).

In the case of a submodular objective function f , it is NP-hard to solve the relaxation
(2) exactly. Thus, we shall use Lemma 2.5 to obtain an approximate solution; we discuss
the details of this approach in Section 4.

We now describe our general rounding procedure. We are given an instance of a stochastic
probing problem over universe E, specified by a set of kin inner matroids, kout outer matroids,
an objective function f , and a probability pe for each e ∈ E. We first obtain a feasible solution
x0 to a relaxation (2), using either linear programming or the continuous greedy algorithm.
Next, we iteratively round the solution, carrying out a single probe in each iteration. In each
iteration we randomly select a single element ē in the support of x to probe, choosing ē with
probability proportional to xē. We probe ē and update S accordingly, then update the inner
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and outer constraints to obtain a new relaxation (of the form given in (2)) representing the
remaining problem. Finally, we update x to obtain a feasible solution for this new relaxation.
The algorithm terminates when there are no elements remaining in the support of x.

Let us now describe in more detail how the algorithm carries out the updates for a single
step. Suppose that at some step of the algorithm, we select ē to probe. We carry out the
probe, adding ē to S if we are successful. Next, we replace each outer matroid Mout

j with
the contracted matroid Mout

j /ē, to reflect the fact that ē has been probed. If the probe
succeeds, we must similarly update each inner matroid constraint, replacingMin

j byMin
j /ē,

to reflect the fact that ē was taken by the algorithm. If the probe fails, we do not need to
update the inner constraints. Finally, we remove ē from E. This gives us a new relaxation
of the form given in (2).

Next, we need to further update the solution x to obtain a feasible solution for this new
relaxation. Let us describe how to perform a single update corresponding to an outer or
inner matroid constraint, respectively.

Suppose that ē was the element probed, and consider some outer matroid Mout
j , where

1 ≤ j ≤ kout. Before selecting ē, we have x ∈ P(Mout
j ). We can thus represent x as a convex

combination: x =
∑m

i=1 β
out
i 1Bouti

, where Bout
1 , . . . , Bout

m are independent sets in Mout
j . We

modify x to obtain a solution x′ such that x′ ∈ P(Mout
j ) with x′ē = 1, as follows. First, we

pick one set Bout
a with ē ∈ Bout

a to guide the update process; we choose a set Bout
a 3 ē at

random with probability βouta /xē (note that for any element e,
∑

a:e∈Bouta
βouta = xe). Then,

for any set Bout
b , let i = φa,b(ē), where φa,b is the mapping from Bout

a into Bout
b given by

Corollary 2.2. If i = ē, then ē ∈ Bout
b and we do nothing. If i =⊥, then Bout

b + ē ∈Mout
j , and

so we replace Bout
b by Bout

b + ē. Otherwise, we substitute Bout
b with Bout

b − i+ ē in the support
of x. Each such substitution decreases the value of coordinate i by βb. After performing all
such substitutions, we obtain a vector x′ ∈ P(Mout

j ). The vector x′ is a convex combination
of independent sets all containing ē. Thus, we have x′ē = 1, while for all i 6= ē, we have
x′i = xi − δi for some 0 ≤ δi ≤ xi.

Similarly, if ē is successfully probed we must perform a support update for each inner
matroid Min

j . Here, we proceed as in the case of the outer matroids, except now we have
p · x ∈ Min

j , and we choose a set Bin
a 3 ē to guide the support update with probability

βina /(xēpē). We consider then the vector y = p · x instead of x. We obtain a vector y′ ∈Min
j

with y′ē = 1 and for all i 6= ē, y′i = yi − δipi = (xi − δi)pi for some 0 ≤ δi ≤ xi.
We now show how to combine these individual matroid updates to obtain a feasible

solution for the updated relaxation. Consider some element i 6= ē. Each matroid update
requires decreasing xi by some value 0 ≤ δi ≤ xi. We decrease each such xi by the maximum
such δi required by any of the kout + kin updates, and call the resulting solution x′. Then,
we have both {x′i}i 6=ē ∈ P(Mout

j /ē) for each 1 ≤ j ≤ kout and {x′ipi}i 6=ē ∈ P(Min
j /ē) for each

1 ≤ j ≤ kin.
It remains to remove ē from E. Note that once our algorithm sets some coordinate xi to

0, i will never be probed, and so xi will remain 0 for the remainder of the algorithm. Thus,
in order to simplify our discussion, we do not explicitly remove ē from E in each iteration.
Rather, we just set xē to 0. Thus, all solutions we consider will be vectors in [0, 1]E. Note
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that the coordinates of our current fractional solution x are always decreasing throughout
the algorithm, either due to a matroid update step, or because we set xē to 0 after probing
ē.

We now turn to the general analysis of our rounding procedure. In order to analyze
the approximation performance of our algorithm, we shall keep track of a potential value z,
depending on the current solution x, which intuitively represents the expected value of the
remaining fractional solution x, given the choices that have been made so far. Initially, our
potential z will be at least some constant fraction of the optimal value of (2), and in the final
step z will be equal to 0. Let xt, St, and zt be the current value of x, z, and S at the end of
the tth iteration, and let x+ be the optimal solution of (2). Our analysis proceeds by first
showing that z0 ≥ β · f+(x+). for some constant β ∈ (0, 1]. Then, we consider an arbitrary
step t + 1 and analyze the expected decrease E[zt − zt+1] in the potential due to this step.
We bound this decrease in terms of the expected increase E[St+1−St] in the probed solution
S at this step, showing that:

α · E[zt − zt+1] ≤ E[f(St+1)− f(St)],

for some α < 1. Then, we employ the following Lemma to conclude that the algorithm is an
αβ-approximation in expectation. The proof is based on Doob’s optional stopping theorem
for martingales. Hence, we need to employ language from martingale theory, such as stopping
time and filtration. We provide the necessary definitions, together with a statement of Doob’s
theorem in Appendix B. See [43] for extended background on martingale theory.

Lemma 2.7. Suppose our algorithm runs for τ iterations and that the potential function
z satisfies z0 ≥ β · f+(p · x+) and zτ = 0. Let (Ft)t≥0 be the filtration associated with
our iterative algorithm, where Fi represents all information available after the ith iteration.
Finally, suppose that in each step t+ 1 of our iterative rounding procedure:

E
[
f
(
St+1

)
− f

(
St
)∣∣Ft] ≥ α · E

[
zt − zt+1

∣∣Ft] .
Then, the final solution Sτ produced by the algorithm satisfies E[f(Sτ )] ≥ αβ · E[f (OPT )].

Proof. Define the random variable Gt = f(St) − f(St−1), representing the gain in f in
iteration t, and similarly let Lt = zt−1−zt represent the loss in z in iteration t. Additionally,
define G0 = L0 = 0. For each 0 ≤ t ≤ τ , define Dt = Gt − α · Lt. The sequence of random
variables Xt = (D0 +D1 + ...+Dt), t ≥ 0, forms a sub-martingale, i.e.

E [Xt+1| Ft] =
t∑
i=0

Di + E [Gt+1 − α · Lt+1| Ft] ≥
t∑
i=0

Di.

Let τ be the step in which the algorithm terminates, i.e. τ = min{t | xt = 0E}. Then, the
event τ = t depends only on F0, . . . ,Ft, so τ is a stopping time. Also, by the definition of the
algorithm xτ = 0E. It is easy to verify that all the assumptions of Doob’s optional stopping
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theorem are satisfied, and from this theorem we get that E[
∑τ

i=0Di] ≥ E[D0]. Since D0 = 0,
we have

0 ≤ E

[
τ∑
i=0

Di

]
= E

[
τ∑
i=0

Gi − α ·
τ∑
i=0

Li

]
= E

[
τ∑
i=0

Gi

]
− α · E

[
τ∑
i=0

Li

]
.

Finally, we note that

τ∑
i=0

Gi =
τ∑
i=1

[
f(Si)− f(Si−1)

]
= f(Sτ )− f(∅) = f(Sτ )

and so E[
∑τ

i=0 Gi] = E[f(Sτ )], and similarly,

τ∑
i=0

Li =
τ∑
i=1

[
zi−1 − zi

]
= z0 − zτ ≥ β · f+(p · x+)− 0 = β · f+(p · x+),

and so from Lemma 2.6, E[f(Sτ )] ≥ α ·E[
∑τ

i=0 Li] ≥ αβ · f+(p · x+) ≥ αβ ·E[f(OPT )].

Henceforth, we will implicitly condition on all information Ft available to the algorithm
just before it makes step t+ 1. That is, when discussing step t+ 1 of the algorithm, we write
simply E[·] in place of E [ ·| Ft].

3 Linear stochastic probing

We now consider the linear setting, in which we are given a weight we and a probability pe
for each element e ∈ E and our objective f(S) is simply

∑
e∈S we. We note that because f

is linear, we in fact have

f+(p · x) =
∑
e∈E

wepexe.

Thus, (2) is a linear maximization problem. We can solve this problem exactly via stan-
dard linear programming techniques, using the results of Cunningham [18] and the ellipsoid
algorithm. We then obtain an initial solution x0 satisfying f+ (p · x0) = f+ (p · x+).

At each step t, our algorithm randomly selects an element ē to probe. Let Σt =
∑

e∈E x
t
e.

Then, our algorithm chooses ē = e with probability xte/Σ
t. As discussed in the previous

overview, the algorithm then probes ē and updates the matroid constraints to reflect both
the choice of ē and the outcome of the probe. Finally, it updates xt to obtain a new fractional
solution xt+1 for the new set of constraints and removes ē from the support of x.

We now turn to the analysis of the algorithm. Our potential zt at step t will be given by:

zt =
∑
e∈E

wepex
t
e.

In particular, we have z0 = f+ (p · x0) = f+ (p · x+). Suppose that the algorithm terminates
after τ steps. Then, zτ =

∑
e∈E wepe ·0 = 0. Hence, the conditions of Lemma 2.7 are satisfied

with β = 1.
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We now bound the expected loss E[zt − zt+1] in step t + 1. In order to do this, we
consider the value δi = pi

(
xti − xt+1

i

)
for each i ∈ E. The decrease δi may be caused either

by selecting i to probe, in case which we set xt+1
i to 0, or by the matroid update step, in

which we decrease several other coordinates of xt to obtain xt+1. Let us first consider the
losses due to each matroid update.

Lemma 3.1. Consider the update step performed for a given outer matroidMout
j in step t+1,

and let δouti be the amount that xti is decreased by this step. Then, E[δouti ] ≤ 1
Σt

(1− xti)xti.

Proof. The expectation E[δouti ] is over the random choice of an element ē to probe and the
random choice of an independent set to guide the update. Let Eouta denote the event that
the set Bout

a is chosen to guide a support update for Mout
j .

In a given step, the probability that the set Bout
a is chosen to guide the support update

is given by

P
[
Eouta

]
=
∑
e∈Bouta

xte
Σt

βouta

xte
=
∑
e∈Bouta

βouta

Σt
=
∣∣Bout

a

∣∣ βouta

Σt
.

Moreover, conditioned on the fact Bout
a was chosen, the probability that a particular element

e ∈ Bout
a was probed is uniform over the elements of Bout

a :

P
[
e probed | Eouta

]
= P

[
e probed ∧ Eouta

] /
P
[
Eouta

]
=
xte
Σt

βouta

xte

/∣∣Bout
a

∣∣ βouta

Σt
=

1

|Bout
a |

. (3)

We can write the expected decrease as E[δouti ] =
∑m

a=1 P [Eouta ] · E [δouti | Eouta ]. Note that for
all i ∈ Bout

a , we have φa,b(i) = i for every set Bout
b such that i ∈ Bout

b . Thus, the support
update will not change the current value of xti for any i ∈ Bout

a , and so in fact

E[δouti ] =
m∑
a=1

P
[
Eouta

]
· E
[
δouti

∣∣ Eouta

]
=

∑
a:i/∈Bouta

P
[
Eouta

]
· E
[
δouti

∣∣ Eouta

]
.

Now let us condition on taking Bout
a to guide the support update. Consider a set Bout

b

containing i. If we remove i from Bout
b , and hence decrease xti by βoutb , it must be the case

that we chose to probe the single element φ−1
a,b(i) ∈ Bout

a . As shown in (3), the probability
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that we probe this element is 1
|Bouta | . Hence∑

a:i/∈Bouta

P
[
Eouta

]
· E
[
δouti

∣∣ Eouta

]

=
∑

a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Boutb

βoutb · P
[
φ−1
a,b(i) is probed

∣∣Eouta

]
≤

∑
a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Boutb

βoutb ·
1

|Bout
a |


=

∑
a:i/∈Bouta

P
[
Eouta

]
· xti
|Bout

a |

=
∑

a:i/∈Bouta

∣∣Bout
a

∣∣ βouta

Σt
· xti
|Bout

a |
=

1

Σt

∑
a:i/∈Bouta

βouta xti =
1

Σt

(
1− xti

)
xti.

Lemma 3.2. Consider the update step performed for a given inner matroidMin
j in step t+1,

and let δini be the amount that xti is decreased by this step. Then, E[δini ] ≤ 1
Σt

(1− pixti)xti.

Proof. Because we only perform a support update when the probe of a chosen element is
successful, the expectation E[δini ] is over the random result of the probe, as well as the
random choice of element ē to probe and the random choice of a base to guide the update.
We proceed as in the case of Lemma 3.1, now letting E ina denote the event that the probe
was successful and Bin

a is chosen to guide the support update. We have:

P
[
E ina
]

=
∑
e∈Bina

pe
xte
Σt

βina
pexte

=
∑
e∈Bina

βina
Σt

=
∣∣Bin

a

∣∣ βina
Σt
,

P
[
e probed | E ina

]
= P

[
e probed ∧ E ina

] /
P
[
E ina
]

= pe
xte
Σt

βina
pexte

/∣∣Bin
a

∣∣ βina
Σt

=
1

|Bin
a |
.

By a similar argument as in Lemma 3.1 we then have that E[δini ] is at most:

∑
a:i/∈Bina

P
[
E ina
]
·

 ∑
b:i∈Binb

βinb ·
1

|Bin
a |

 =
∑

a:i/∈Bina

P
[
E ina
]
· xti
|Bin

a |

=
∑

a:i/∈Bouta

∣∣Bin
a

∣∣ 1

Σt
βina ·

xti
|Bin

a |
=

1

Σt

∑
a:i/∈Bina

βina x
t
i =

1

Σt
(1− pixti)xti.

We perform the matroid updates sequentially for each of the kin and kout matroids to
obtain a new solution xt+1. Now, we consider the expected decrease of a single coordinate of
xt due to both the initial probing step, in which we decrease the probed element’s coordinate
to 0, and the matroid updates.
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Lemma 3.3. For each step t+ 1 in the iterative rounding procedure,

E[piδi] = E[pi(x
t
i − xt+1

i )] ≤ kin + kout

Σt
pix

t
i

for all i ∈ E.

Proof. We must decrease xti either by xti, in the case that i is probed, or by the maximum
value δouti or δini required by any matroid update. Then, the total decrease in xti is less than
or equal to the sum of all the decreases required by the probing step and each individual
update step. Thus, we have

E[piδi] ≤ P [i probed] pix
t
i + koutpiE[δouti ] + kinpiE[δini ]

≤ xti
Σt
pix

t
i + kout

1

Σt
(1− xti)pixti + kin

1

Σt
(1− pixti)pixti

≤ 1

Σt

(
koutpix

t
i + kin(1− pixti)pixti

)
≤ 1

Σt
(kout + kin)pix

t
i,

where the second inequality follows from Lemmas 3.1 and 3.2 and the third one uses the fact
that kout ≥ 1.

Using Lemma 3.3 we can now prove our main result for linear stochastic probing.

Theorem 3.4. For a linear objective function f , the solution S produced by our random-
ized rounding algorithm satisfies E[f(S)] ≥ 1

kout+kin
E[f(OPT )], where OPT is the solution

produced by the optimal policy.

Proof. Because zt is a linear function of xt, the expected total decrease of z in step t+ 1 is
given by:

E[zt − zt+1] =
∑
i

wiE[pi(x
t
i − xt+1

i )] ≤ kout + kin

Σt

∑
i

wipix
t
i,

where the inequality follows from Lemma 3.3.
On the other hand, the expected gain in f(S) is∑

e∈E

wepeP [e probed] =
1

Σt

∑
e∈E

wepex
t
e ≥

1

kout + kin
E[zt − zt+1].

Applying Lemma 2.7, with β = 1 and α = 1
kout+kin

, the final solution Sτ produced by the

algorithm satisfies E[f(Sτ )] ≥ 1
kout+kin

E[f(OPT )].
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4 Submodular stochastic probing

We now consider the case in which the objective function f : 2E → R≥0 is a monotone
submodular function. Obtaining an optimal solution to the relaxation (2) is NP-hard in
this case [9], but we can obtain a constant-factor approximation using the continuous greedy
algorithm. That is, we run the continuous greedy algorithm on the multilinear relaxation

F of f and the polytope P =
⋂kout

j=1 P(Mout
j ) ∩

⋂kin

j=1P(Min
j ). We consider the solution x̂

produced by the algorithm when it is terminated at some time T ∈ (0, 1]. According to
Lemma 2.5, we have x̂/T ∈ P and F (p · x̂) ≥ (1− e−T − o(1))f+(p · x+). We then start our
iterative rounding procedure with initial solution x0 = x̂/T , and define the potential zt by

zt = F (1St + T · (p · xt))− F (1St),

for all 0 ≤ t ≤ τ . Then, we have

z0 = F (1S0 + T · (p · x0))− F (1S0) = F (T · (p · x0)) = F (p · x̂) ≥ (1− e−T − o(1))f+(p · x+).

If the probing algorithm stops after τ steps, then we have zτ = F (1Sτ +T ·p ·0E)−F (1Sτ ) =
F (1Sτ ) − F (1Sτ ) = 0. Thus, the potential z satisfies the conditions of Lemma 2.7 with
β = 1− e−T − o(1).

Given the initial value x0, our iterative rounding algorithm proceeds exactly as in the lin-
ear case. We now apply Lemma 2.7 with the potential z to analyze the expected performance
of our probing algorithm.

Theorem 4.1. For a monotone submodular objective function f , and any stopping time T ∈
(0, 1] for the continuous greedy phase, the solution S produced by our randomized rounding

algorithm satisfies E[f(S)] ≥ (1−e−T−o(1))
T (kout+kin)+1

E[f(OPT )], where OPT is the solution produced
by the optimal policy.

Proof. We analyze the expected decrease E[zt − zt+1] due to step t + 1 of the algorithm.
Suppose that the algorithm selects element ē to probe. Then, we have St+1 = St + ē with
probability pē, and St+1 = St otherwise. In general, we have

E[zt − zt+1]

= E[F (1St + T · (p · xt))− F (1St)]− E[F (1St+1 + T · (p · xt+1))− F (1St+1)]

= E[F (1St+1)− F (1St)] + E[F (1St + T · (p · xt))− F (1St+1 + T · (p · xt+1))]

≤ E[F (1St+1)− F (1St)] + E[F (1St + T · (p · xt))− F (1St + T · (p · xt+1))], (4)

where in the last line, we have used the fact that St+1 ⊇ St and F is increasing in all
directions (Lemma 2.4).

We shall first bound the second expectation in (4). For each i ∈ E, we define

wi =
∂F

∂xi
(1St) = F (1St+i)− F (1St) = f(St + i)− f(St).
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As in the linear case, let δ = xt − xt+1, and note that δi = 0 for all i ∈ St. Let y =
1St + T · (p · xt) and suppose that we decrease the coordinates of y sequentially in some
arbitrary order to obtain the vector 1St +T · (p ·xt+1) = y−T · (p · δ). We consider the total
change in F when an arbitrary coordinate i is decreased. Let y′ be the vector obtained from
y after all coordinates preceding i have been decreased. Lemma 2.3 states that F behaves
as a linear function when only one coordinate changes, and so the total change in F from
decreasing coordinate i is given by:

F (y′)− F (y′ − T · ((p · δ) · 1i)) = T · piδi
∂F

∂xi
(y′) ≤ T · piδi

∂F

∂xi
(1St) = T · wipiδi,

where the inequality follows from y′ ≥ 1St and Lemma 2.4, which states that the partial
derivatives of F are coordinate-wise non-increasing. Thus, we have:

E[F (1St + T · (p · xt))− F (1St + T · (p · xt+1))] = E[F (y)− F (y − T · (p · δ))]

≤ E

[∑
i∈E

T · wipiδi

]
=
∑
i∈E

T · wipi · E[δi] ≤
1

Σt
(kout + kin)

∑
i∈E

T · wipixti, (5)

where the last inequality follows from Lemma 3.3, since our algorithm alters the solution xt

exactly as in the linear case.
Returning to the first expectation in (4), we have

E[F (1St+1)− F (1St)] =
∑
i

P [i probed] pi(F (St + i)− F (St)) =
1

Σt

∑
i∈E

xtipiwi. (6)

Combining inequalities (4), (5), and (6) we obtain:

E[zt − zt+1] ≤ 1

Σt

∑
i∈E

wipix
t
i +

1

Σt
(kout + kin)

∑
i∈E

T · wipixti

= (T · (kout + kin) + 1)
1

Σt

∑
i

wipix
t
i.

On the other hand, the expected increase of f(St+1)− f (St) in this step is:

1

Σt

∑
i∈E

xtipi(f(St + i)− f(St)) =
1

Σt

∑
i∈E

xtipiwi ≥
1

T · (kout + kin) + 1
E[zt − zt+1].

Applying Lemma 2.7, with β = 1 − e−T − o(1) and α = 1
T ·(kout+kin)+1

, the final solution Sτ

produced by the algorithm satisfies

E[f(Sτ )] ≥ 1− e−T − o(1)

T · (kout + kin) + 1
E[f(OPT )].
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Let k = kout + kin. Then, Theorem 4.1 shows that our probing algorithm returns a
solution that has expected value at least ρ(T )− o(1) times that of the optimal policy, where

ρ(T ) , 1−e−T
Tk+1

. Setting just T = 1 gives us ρ(T ) =
(
1− 1

e

)
/ (k + 1), but in Appendix C, we

derive the optimal value Topt for T , showing that for k = 1, Topt = 1 and for all k > 1,

Topt = −1− 1

k
−W−1(−e−1− 1

k ),

where W−1 is the lower, real-valued branch of the Lambert W function. We refer the reader
to [16] for a thorough introduction to the Lambert W function. Chatzigeorgiou [10] gives
the following bounds on W−1(e−u−1) that hold for all u ∈ (0, 1):

−1−
√

2u− 3

4
u ≤ W−1(−e−u−1) ≤ −1−

√
2u− 2

3
u ≤ W−1(e−u−1).

Using u = 1
k
, in this bound, we obtain

−
√

2

k
+

1

4k
≤ 1 +

1

k
+W−1(−e−1− 1

k ) ≤ −
√

2

k
+

1

3k
,

and hence

Topt =

√
2

k
− 1

γkk
,

for γk ∈ [3, 4]. Using the fact that e−x = 1−x+Θ(x2), we find that the optimal approximation
ratio satisfies

ρ (Topt) =
1− e−

√
2
k

+ 1
γkk(√

2
k
− 1

γkk

)
k + 1

=

√
2
k
−Θ

(
1
k

)
√

2k + 1− 1
γk

=
1−Θ

(
1√
k

)
k +

√
k
2

(
1− 1

γk

) .
5 Non-Bipartite Matching and Matchoid Constraints

We now briefly consider a generalization of the matroid intersection setting studied in the
previous sections. We can formulate the maximum-weight matching problem in a general
graph G = (V,E) as follows: for each v ∈ V let E(v) ⊆ E be the set of edges incident to
v, and let M′

v = (I ′v, E(v)) be a uniform matroid of rank 1 defined on E(v). This gives |V |
different matroids, each defined on some subset E. For convenience, we can easily extend
each matroid M′

v to a matroid Mv on all of E, by letting Mv = (Iv, E) be the union of
M′

v and a free matroid on E \ E(v). The maximum-weight matching problem in G is then
equivalent to finding a maximum weight set S such that S ∈ Iv for every v ∈ V .

Note that a set S ⊆ E is independent in Mv if and only if S ∩ E(v) is independent.
We say that an element e ∈ E participates in the matroid constraint Mv if and only if
e ∈ E(v). In our formulation of the maximum weighted matching problem, a given element
e ∈ E can participate in only 2 matroid constraints, since each edge e has 2 endpoints.
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We can formulate the maximum weighted matching problem in a k-uniform hypergraph in
the same fashion; each e ∈ E is now a set of k vertices, and will hence participate in k
matroid constraints. Additionally, we can naturally extend this construction to b-matchings
by letting each M′

v be a uniform matroids of rank b. Even more generally, we can consider
the k-matchoid problem in which we have a k-uniform hypergraph and each matroid M′

v is
some arbitrary matroid. Matchoids generalize matroid intersections, since we can represent
k simultaneous matroid constraints on a ground set E as a hypergraph with k vertices (one
corresponding to each matroid constraint) and |E| parallel hyperedges, each incident to all
k vertices.

We now describe a simple adaptation of our probing algorithm to this generalized setting.
Suppose that we are given a kout-matchoid constraining which elements may be probed, and
a kin-matchoid constraining the elements that may be selected. Specifically, we are given a
ground set E, a kout-uniform hypergraph Hout = (V out, Eout), and a kin-uniform hypergraph
H in = (V in, Ein) where |E| = |Eout| = |Ein|. We suppose that for each element e ∈ E there
is a unique corresponding edge eout ∈ Eout and ein ∈ Ein. Additionally, we are given two sets
of matroids {Mout

v }v∈V and {Min
v }v∈V on E, where only the elements of E corresponding to

those edges of Eout(v) (respectively, Ein(v)) participate in the constraintMout
v (respectively,

Min
v ). As in the case of matroid intersections, our goal is to find and probe a subset of

elements Q ⊆ E that is independent in each outer matroid, so that the subset of active
elements S ⊆ Q is independent in each inner matroid and has maximum value under a given
function f : 2E → R≥0.

We first obtain a solution to the following mathematical optimization program using
either linear programming or the continuous greedy algorithm:

maximize f+(p · x)

subject to: x ∈ P(Mout
v ), v ∈ V

p · x ∈ P(Min
v ), v ∈ V

x ∈ [0, 1]E (7)

Note that now our program may have significantly more than kin +kout matroid constraints.
However, since Hout is kout-uniform and H in is kin-uniform, we may assume that |V | ≤
(kin + kout)|E|. Thus, the total number of matroid constraints is still polynomial, and we
can use the same techniques that we applied to (2) to solve (7).

Given a solution x of (7), our rounding procedure proceeds exactly as in the case of
matroid intersection, randomly selecting an element ē ∈ E to probe at each time step t with
probability proportional to xēt, probing ē, then performing the necessary updates in each
outer and inner matroid to obtain a new solution of (7). As in the intersection case, each
of our outer and inner matroid updates satisfy Lemmas 3.1 and 3.2, respectively. Finally,
we claim that Lemma 3.3 holds in our general setting. Indeed, we observe that, although
there are now potentially many more than k outer and inner matroids, we must only update
the constraints in which e participates. Each element e ∈ E participates in only kout outer
matroid constraints and kin inner matroid constraints, and so the maximum number of
updates is exactly the same as in the proof of Lemma 3.3. It then follows that Lemma 3.3,
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and hence also our main technical results, Theorems 3.4 and 4.1, are valid even in the more
general setting of matchoid constraints.

6 Conclusion

Here, we have considered the problem of maximizing a monotone submodular set function in
the general stochastic probing model with matroid constraints on both the elements probed
and the elements taken. Our general approach makes use of a new iterative rounding algo-
rithm for linear set functions, together with a new observation regarding the performance of
the continuous greedy algorithm for submodular maximization. We believe that this latter
ingredient (given as Lemma 2.5 and described in detail in Appendix A) may be of use for
the design and analysis of other stochastic algorithms in other contexts, as well.

One potential generalization in this direction would be to determine whether our results
may be generalized to non-monotone functions using, for example, the measured continuous
greedy algorithm of Feldman et al. [23]. Additionally, we ask whether a similar approach
may be employed for other forms of constraints, such as knapsack constraints. For example,
although b–matchings in general (non-bipartite) graphs are not intersections of two matroids,
it is possible to exploit the matching structure to give a factor-1/4 approximation using our
techniques.

Our analysis relies heavily on items being active with independent probabilities. Another
direction for further work involves considering the case in which these probabilities may be
correlated. While existing work on the correlation gap [44] implies that we can obtain a
constant factor by simply ignoring correlations, it may be possible to obtain a better factor.
In particular, we ask whether it might be possible to employ techniques similar to those
that we employ to deal with correlations between choices in the probing policy to deal with
correlations between items.

A final open question is whether it is possible to show that our results are the best
possible. We note that even for offline, unweighted k-matroid intersection, the best known
inapproximability result is O(ln k/k), which follows from inapproximability of k-set packing
[32]. In contrast, the best known algorithms for matroid intersection problems have approx-
imation guarantees of only 2/(k + ε) in the unweighted case [34], and 1/(k − 1 + ε) in the
weighted case [35]. It would be interesting to investigate whether stronger lower bounds may
be obtained in the stochastic model for multiple inner or outer matroid constraints.
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[9] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a sub-
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A The Continuous Greedy Algorithm

Let I be an independence system with a corresponding downward-closed solvable2 polytope
P and let x+ = arg maxy∈P f

+(y), where f+ is the relaxation given by (1) for some monotone
submodular function f . Suppose that we run the continuous greedy algorithm until time
T ∈ (0, 1], obtaining a solution x.

We show how to modify the analysis of the continuous greedy algorithm to obtain the
following the following stronger guarantees.

1. x/T ∈ P

2. F (x) ≥ (1− e−T − o(1)) maxy∈P f
+(y)

Our analysis is based on a proof due to Vondrák [42].
We consider the extension:

f ∗(y) = min
S⊆E

[
f(S) +

∑
j∈E

yjfS(j)

]
.

Călinescu et al. [9] show that for any value y ∈ [0, 1]E, f+(y) ≤ f ∗(y).
Let y(t) be the value of the fractional solution at time t of the continuous greedy algo-

rithm. First, we note that at each step the continuous greedy algorithm adds δ · v(t) to the
current solution y(t), where v(t) is some vector in the polytope P . Then, x = y(T ) can be
written as T times a convex combination of the points v(t) ∈ P :

T/δ∑
t=1

δv(t) = T

T/δ∑
t=1

δ

T
v(t).

2A polytope is solvable if the linear optimization problem maxv∈P
∑

j∈E vjwj can be solved for any set

of weights w ∈ RE
≥0. All of the constraints considered in this paper have solvable polytopes.
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Hence, we have x/T ∈ P as required.
We now show how to obtain our approximation guarantee with respect to f+(x+). Our

proof closely follows that of [17]. Suppose throughout that we discretize time into increments
of size δ = 1

9n2 .

Lemma A.1 (Modification of Lemma 3.1 in [17]). Consider any y ∈ [0, 1]E and let R denote
a random set in which each element e ∈ E occurs independently with probability ye. Then,

f+(x+) ≤ F (y) + max
v∈P

∑
j∈E

vjE[fR(j)].

Proof. We have the fractional solution x+ ∈ P , and so:∑
j∈E

x+
j E[fR(j)] ≤ max

v∈P

∑
j∈E

vjE[fR(j)]. (8)

We note that F (y) = E[f(R)], and so (8) implies

F (y) + max
v∈P

∑
j∈E

vjE[fR(j)] ≥ E[f(R)] +
∑
j∈E

x+
j E[fR(j)]

= E

[
f(R) +

∑
j∈E

x+
j fR(j)

]

≥ min
S⊆E

[
f(S) +

∑
j∈E

x+
j fS(j)

]
= f ∗(x+) ≥ f+(x+).

Lemma A.2 (Modification of Lemma 3.2 in [17]). With high probability, the continuous
greedy algorithm for every time step t finds a vector v(t) ∈ P such that∑

j∈E

vj(t)E[fR(t)(j)] ≥ (1− 2nδ)OPT − F (y(t)).

Proof. Let y(t) be the value of y at time t, and let R(t) denote the random set in which
each element j ∈ E appears independently with probability yj(t). At each time step
t, the continuous greedy algorithm computes a solution to linear optimization problem
maxv∈P

∑
j∈E vjωj(t), where each ωj(t) is an estimate the true expected marginal E[fR(t)(j)].

Călinescu et al. show that, given the choice of δ, the estimates satisfy |ωj(t)−E[fR(t)(j)]| ≤
δ · OPT with high probability. Now, let M = maxv∈P

∑
j∈E vjωj(t) and let v∗ ∈ P be some

vector attaining this maximum. By Lemma A.1, we have M ≥ f+(x+) − F (y(t)), and the
solution v(t) of the linear optimization problems satisfies

∑
j∈E vj(t)ωj(t) ≥

∑
j∈E v

∗
jωj(t) ≥
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M − nδ ·OPT . Therefore, with high probability∑
j∈E

vj(t)E[fR(t)(j)] ≥
∑
j∈E

vj(t)ωj(t)− nδ ·OPT

≥M − 2nδ ·OPT
≥ f+(x+)− F (y(t))− 2nδ ·OPT
≥ (1− 2nδ)f+(x+)− F (y(t)),

where the last inequality follows from the fact that f+ is a relaxation of f , and so OPT ≤
f+(x+).

Lemma A.3. With high probability the fractional solution y(T ) produced by the continuous
greedy algorithm stopping at time T ∈ (0, 1] satisfies:

F (y(T )) ≥
(
1− e−T − o(1)

)
f+(x+).

Proof. As in Lemma A.2, let R(t) be a random set in which each element j ∈ E appears
independently with probability yj(t). Let D(t) be a random set in which each element
j ∈ E appears with probability δvj(t). Then, E[f(R(t + δ))] ≥ E[f(R(t) ∪ D(t))], since f
is monotone and each element j appears in R(t + δ) with probability yj(t) + δvj(t) but in
R(t) ∪ D(t) with probability only 1 − (1 − yj(t))(1 − δvj(t)) ≤ yj(t) + δvj(t). Therefore,
applying Lemma A.2, with high probability we have:

F (y(t+ δ))− F (y(t)) = E[f(R(t+ δ))− f(R(t))]

≥ E[f(R(t) ∪D(t))− f(R(t))]

≥
∑
j∈E

P [D(t) = {j}]E[fj(R(t))]

=
∑
j∈E

δvj(t)
∏
i 6=j

[
1− δvi(t)

]
E[fj(R(t))]

≥
∑
j∈E

δvj(t)(1− δ)n−1E[fj(R(t))]

≥ δ(1− nδ)
∑
j∈E

vj(t)E[fj(R(t))]

≥ δ(1− nδ)
[
(1− 2nδ)f+(x+)− F (y(t))

]
≥ δ
[
(1− 3nδ)f+(x+)− F (y(t))

]
.

Let ˜OPT = (1− 3nδ)f+(x+). Then, we can rewrite the above inequality as:

˜OPT − F (y(t+ δ)) ≤ (1− δ)
[

˜OPT − F (y(t))
]
.

Proceeding inductively, we then have:

˜OPT − F (y(T )) ≤ (1− δ)T/δ
[

˜OPT − F (y(0))
]
≤ (1− δ)T/δ ˜OPT ≤ e−T · ˜OPT .
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Finally, since δ = 1
9n2 , we have:

F (y(1)) ≥
(
1− e−T

)
˜OPT =

(
1− e−T

)(
1− 1

3n

)
f+(x+) ≥

(
1− e−T − 1

3n

)
f+(x+).

B Martingale Theory

Here, we give a brief overview of the basic notions from martingale theory necessary for the
proof of Lemma 2.7.

Definition B.1. Let (Ω,F ,P) be a probability space, where Ω is a sample space, F is a
σ-algebra on Ω, and P is a probability measure on (Ω,F). Sequence {Ft : t ≥ 0} is called a
filtration if it is an increasing family of sub-σ-algebras of F : F0 ⊆ F1 ⊆ . . . ⊆ F .

Intuitively speaking, when considering a stochastic process, σ-algebra Ft represents all
information available to us right after making step t. In our case σ-algebra Ft contains all
information about each randomly chosen element to probe, about outcome of each probe,
and about each support update for every matroid, that happened before or at step t.

Definition B.2. A process (Xt)t≥0 is called a martingale if for every t ≥ 0 all following
conditions hold:

1. random variable Xt is Ft-measurable,

2. E[|Xt|] <∞,

3. E [Xt+1| Ft] = Xt.

In our case we actually consider a sub-martingale (Xt)t≥0 which satisfies E [Xt+1| Ft] ≥ Xt

instead of equality in the above definition.

Definition B.3. Random variable τ : Ω 7→ {0, 1, . . .} is called a stopping time if {τ = t} ∈ Ft
for every t ≥ 0.

Intuitively, τ represents a moment when an event happens. We have to be able to say
whether it happened at step t given only the information from steps 0, 1, 2, . . . , t. In our case
we define τ as the first moment when the fractional solution becomes zero. It is clear that
this is a stopping time according to the above definition.

Theorem B.1 (Doob’s Optional-Stopping Theorem). Let τ be a stopping time. Let (Xt)t≥0

be a sub-martingale. If there exists a constant N such that always τ < N , then E[Xτ ] ≥
E[X0].

The above is not Doob’s theorem in its full generality, but rather the simplest variant
that still holds in our setting.
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C Derivation of Topt

Recall that our submodular stochastic probing algorithm’s approximation performance is
given by ρ(T )− o(1), where:

ρ(T ) =
1− e−T

Tk + 1
,

where T is the stopping time of the continuous greedy algorithm and k = kout + kin ≥ 1.
The first derivative of ρ with respect to T is given by:

d

dT
ρ(T ) =

(Tk + 1)e−T − k
(
1− e−T

)
(Tk + 1)2

.

We have d
dT
ρ(T ) = 0 if and only if

k

(
T +

1

k
+ 1

)
e−T − k = 0,

or, equivalently (since k ≥ 1):(
T + 1 +

1

k

)
e−T = 1

−
(
T + 1 +

1

k

)
e−T−1− 1

k = −e−1− 1
k

−T − 1− 1

k
= W

(
−e−1− 1

k

)
T = −1− 1

k
−W

(
−e−1− 1

k

)
,

where W is the Lambert W function, defined by the equation z = W (z)eW (z) (for a detailed
discussion of the Lambert W function, we refer the reader to [16]). The function W (z) has 2
real-valued branches in the range [−e−1, 0]. In this range, the upper branch W0 of W takes

values in [−1, 0] and so W0(−e−1− 1
k ) yields a negative value for T , since −1− 1

k
< −1. Thus,

we restrict ourselves to the lower branch, W−1, which takes values in [−1,−∞] over this
range. The single, real-valued critical point of ρ(T ) satisfying T ≥ 0 is thus given by:

Topt = −1− 1

k
−W−1

(
−e−1− 1

k

)
. (9)

Now, we show that Topt is a maximizer of ρ. Let B(T ) = Tk+ 1 and note that B(T ) > 0
for all T ≥ 0. Then, we have:

d2

dT 2
ρ(T ) =

B(T )2(−B(T )e−T )− 2B(T )k
(
B(T )e−T − k + ke−T

)
B(T )4

=
−B(T )2e−T − 2B(T )ke−T + 2k2 − 2k2e−T

B(T )3

=
e−T

B(T )3

[
−B(T )2 − 2B(T )k + 2k2eT − 2k2

]
.
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We now show that d2

dT 2ρ(Topt) < 0. Because B(Topt) > 0, it suffices to show that:

−B(Topt)
2 − 2B(Topt)k + 2k2eTopt − 2k2 < 0. (10)

Let C = e−1− 1
k . Then, we have Topt = −1− 1

k
−W−1(−C), and so

Topt + 1 +
1

k
= −W−1(−C)

= −W−1(−C)eW−1(−C)e−W−1(−C)

= −(−C)e−W−1(−C)

= e−1− 1
k e−W−1(−C)

= eTopt .

Thus, we have

2k2eTopt = 2k2

(
Topt + 1 +

1

k

)
= 2k (Toptk + k + 1) = 2B(Topt)k + 2k2. (11)

Substituting (11) in (10) we obtain

−B(Topt)
2 − 2B(Topt)k + 2B(Topt)k + 2k2 − 2k2 = −B(Topt)

2 < 0,

which is true for all k ≥ 0, since B(Topt) > 0 for all such k. Thus, Topt is a local maximum
for ρ. Because Topt is the only critical point of ρ(T ) for T > 0, it follows that Topt is a global
maximum of ρ. We note that for k = 1, we have Topt > 1. In this case, the optimal value
for T ∈ [0, 1] is given by 1, since T must be non-decreasing on the interval [0, Topt] in order
for Topt to be a global maximum. In all other cases, we have Topt ≤ 1.
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