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Abstract. The sporadic Mathieu group M12 can be viewed as an error-

correcting code, where the codewords are the group’s elements written as per-

mutations in list form, and with the usual Hamming distance. We investigate
the properties of this group as a code, in particular determining completely the

probabilities of successful and ambiguous decoding of words with more than 3

errors (which is the number that can be guaranteed to be corrected).

1. Introduction. In this paper we are concerned with the use of permutation
groups as error-correcting codes, with permutations written in list format as the
codewords. The use of permutation groups as codes in this way goes back to a 1974
paper of Blake [3], where the use of sharply k-transitive groups was first suggested.
(A group G acts sharply k-transitively on a set Ω if for any two [ordered] k-tuples
of distinct elements of Ω there is a unique element of G mapping the first to the
second.) The idea is developed further in the first author’s papers [1, 2], where a
decoding algorithm is described.

In particular, we consider the sporadic Mathieu group M12, which acts sharply
5-transitively on 12 points. From a coding theory perspective, this group is of
particular interest, since (as Blake indicates in [3]) it produces a code that is roughly
comparable to Reed–Solomon codes over F11 and F13 in terms of the length, number
of codewords and minimum distance.

Now M12 has minimum distance 8, so is guaranteed to correct at most 3 errors.
Our main result is to determine completely the probabilities of successful and am-
biguous decoding of words with more than 3 errors. This is also of interest, as in
practical applications, 100% success is not always required; for instance 90% or 95%
may suffice.

2. Definitions and notation.

2.1. The Hamming space. The Hamming space H(m,n) is the set of all ordered
m-tuples over the alphabet {1, . . . , n}. This is a metric space under the Hamming
distance d, where d(x, y) is the number of positions in which x and y differ, for
x, y ∈ H(m,n). We can make H(m,n) into a graph by joining x, y ∈ H(m,n) just
when d(x, y) = 1. If X and Y are non-empty subsets of H(m,n) then d(X, Y ) is
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defined to be min{d(x, y) : x ∈ X, y ∈ Y }; the least distance from x ∈ H(m,n)
to ∅ 6= Y ⊆ H(m,n) is denoted d(x, Y ) = d(Y, x), and defined to be d({x}, Y ) =
min{d(x, y) : y ∈ Y }. The minimum distance of X ⊆ H(m,n) is defined to be
min{d(x, y) : x, y ∈ X | x 6= y }, with the convention that this be ∞ if |X| 6 1.

Elements of H(m,n) may be regarded as functions from {1, . . . ,m} to {1, . . . , n}.
If m = n then Hn := H(n, n) is the set of functions from {1, . . . , n} to itself, and
function composition on Hn makes Hn into a monoid; this is the full transformation
monoid of {1, . . . , n}. Any permutation group G acting on {1, . . . , n} is a submonoid
of Hn (with respect to function composition). In particular, Hn contains the full
symmetric group Sn as a submonoid.

Note that pre-multiplication or post-multiplication by elements of Sn preserves
Hamming distance: thus d(πx, πy) = d(xπ, yπ) = d(x, y) for all x, y ∈ Hn, π ∈ Sn.
Note also that it is our convention that all maps in Hn shall act on the right. Ele-
ments of Sn shall be referred to as permutations, and elements of Hn are (Hamming)
words. for all x ∈ Hn, π ∈ Sn.

We note that the minimum distance of a non-trivial subgroup G 6 Sn is the least
distance from g to G \ {g}, and that this distance is independent of g. Thus the
minimum distance of G is n − max{#Fix(g) : g ∈ G | g 6= ι }, this quantity being
the minimum number of points moved by a non-identity element of G. Here, and
throughout this paper, we use ι to denote the identity permutation.

2.2. Coding theory terminology. From a coding theory perspective, the trans-
mitted codeword is a permutation g ∈ G 6 Sn, and the word received is a Hamming
word w ∈ Hn, where the distance i = d(g, w) is the number of errors in w. A word
containing i errors can therefore be successfully decoded if there is a unique element
of G at distance i from w, and none at distance less than i.

A word w at distance i [with 0 6 i 6 n] from g will decode correctly if d(w,G) =
d(w, g) = i, and the only element h ∈ G such that d(w, h) = i is h = g. The
probability that a word at distance i from g will decode correctly is:

P(G, g, i) :=
number of words at distance i from g which decode correctly

number of words at distance i from g
.

The number of words at distance i from g is (n − 1)i
(
n
i

)
, independent of g. Now

w decodes g correctly if and only if wg−1 decodes ι = gg−1 correctly. Thus the
number of words which decode correctly is independent of g, and thus the probability
of correct decoding is independent of g. Thus we shall write P(G, i) instead of
P(G, g, i). Clearly if G has minimum distance d and i 6 bd−1

2 c then all words at
distance i from g will decode correctly, that is P(G, i) = 1 for such i.

A word w at distance i from g will decode incorrectly if d(w,G) < d(w, g) = i,
and it will decode ambiguously if d(w,G) = d(w, g) = i and there exists h ∈ G \ {g}
such that d(h, w) = i. Analogously, we define Q(G, i) to be the probability that
a distance i word decodes ambiguously, and R(G, i) to be the probability that a
distance i word decodes incorrectly. We have P(G, i) + Q(G, i) + R(G, i) = 1. A
word is green if it decodes the identity correctly, yellow if it decodes the identity
ambiguously, and red if it decodes the identity incorrectly.

2.3. The Mathieu group M12. A Steiner system S(5, 6, 12) is a set B of [neces-
sarily 132] 6-element subsets of Ω = {1, . . . , 12}, such that each 5-element subset of
Ω is a subset of precisely one element of B. There is a unique S(5, 6, 12) up to per-
mutations of Ω (and there are 5040 altogether). The elements of B are referred to as
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special hexads, or hexads for short. An element π ∈ S12 is an automorphism of the
S(5, 6, 12) B if A.π = Aπ ∈ B for all A ∈ B. The full automorphism group of any
particular S(5, 6, 12) is the Mathieu group M12, which has size 95040 = 12.11.10.9.8
and acts sharply 5-transitively on Ω. We note that M12 is transitive on subsets
of size r for 0 6 r 6 12, except if r = 6, when there are two orbits, of sizes 132
and 792. The size 132 orbit consists of the hexads of the associated Steiner system
S(5, 6, 12).

A particular (standard) copy of M12 can be taken to be generated by the per-
mutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
(1, 10)(2, 5)(3, 7)(4, 8)(6, 9)(11, 12)

and (3, 4)(2, 10)(5, 9)(6, 7).
This standard copy is the default copy of M12 in the computer algebra system

GAP, but with different generators. (When working with M12 by hand it is usual
to use this version of M12, but with the symbols 10, 11, 12 relabelled X, 0,∞ respec-
tively.) Certain of the following lemmas, especially Lemma 4, use this standard
copy of M12. Other lemmas, such as Lemma 2 use a relabelling argument, and
therefore use an arbitrary copy of M12.

Since M12 is sharply 5-transitive, it has minimum distance 8, as no two elements
can agree on more than four points. The sharp 5-transitivity also means that the
number of elements [of M12] at distance 8 from a particular element g ∈ M12 is
(8− 1)×

(
12
4

)
= 7× 495 = 3465.

3. Words at distance 4 or less. Since the minimum distance of M12 is 8, any
w ∈ H12 satisfying d(w,M12) 6 3 has a unique nearest neighbour in M12. Thus
for i 6 3 we have P(M12, i) = 1 and Q(M12, i) = R(M12, i) = 0. Furthermore, if
w ∈ H12 and g ∈ M12 satisfy d(w, g) = 4, then d(w,M12) = 4, but w need not have
a unique nearest neighbour in M12, though g is certainly a nearest neighbour to w
in M12. In particular R(M12, 4) = 0. We now investigate those words w satisfying
d(w,M12) = 4, especially those not having a unique nearest neighbour in M12.

Lemma 1. For g, h ∈ M12 satisfying d(g, h) = 8, there are exactly 70 =
(
8
4

)
words

w ∈ H12 such that d(g, w) = d(h, w) = 4.

Proof. If d(g, h) = 8 then g and h agree in exactly 4 positions, while we require
g and w (and h and w) to agree in 8 positions. Thus w agrees with g in 4 of the
positions on which g and h differ, and then w agrees with h in the remaining 4
positions on which g and h differ. So w is completely determined by specifying
the 4 positions on which g and w agree but g and h differ, and there are

(
8
4

)
such

possibilities, each giving rise to a valid w.

Lemma 2. Let w be an element of H12. Then there are at most three elements of
M12 at distance 4 from w.

Proof. Let g and h be two distinct elements of M12 such that d(g, w) = d(h, w) = 4.
Then d(g, h) = 8 and without loss of generality and relabelling points, we may
assume that g and h agree on positions 1, 2, 3 and 4, and thus w also agrees on
those four positions. Moreover, g and w additionally agree on four more positions,
and after relabelling these positions can be taken to be 5, 6, 7 and 8. Now h and w
also agree on eight positions, and since g and h agree on precisely four positions, h
and w agree on 9, 10, 11 and 12.
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Let k ∈ M12 be distinct from both g and h, and have distance 4 from w. Then k
and w agree on eight positions, whereas g, k and w agree on just four, as do h, k and
w. The only 8-element subset of {1, . . . , 12} intersecting each of {1, 2, 3, 4, 5, 6, 7, 8}
and {1, 2, 3, 4, 9, 10, 11, 12} in precisely four points is {5, 6, 7, 8, 9, 10, 11, 12}, and
thus this is the set on which k and w agree. Since k has been determined on an
eight-element subset and no two elements agree more than four points, k is uniquely
determined (if it exists at all).

The above proof shows the following.

Corollary 3. Let g, h, k ∈ M12 be distinct elements all at distance 4 from a Ham-
ming word w. The sets on which g & h, g & k and h & k agree are mutually disjoint
sets of size 4 partitioning {1, . . . , 12}.

We now count the number of ordered tuples (g, h, k, w) such that g, h, k ∈ M12

with g, h, k distinct, w ∈ H12 and d(g, w) = d(h, w) = d(k, w) = 4. This forces g,
h and k to be mutually at distance 8. A couple of reductions are possible. We can
postmultiply g, h, k, w by g−1, and thus assume that g = ι, so that now h and k
fix 4 points. We can then use the 4-transitivity of M12 to conjugate g, h, k, w by a
suitable π ∈ M12 so that h fixes 1, 2, 3 and 4. The total number of configurations
will be 95040×

(
12
4

)
multiplied by the number of configurations we do count.

Lemma 4. The number of ordered tuples (g, h, k, w) where w ∈ H12 and g, h, k are
distinct elements of M12 such that g = ι and h fixes 1, 2, 3 and 4 is 18. For all
such configurations w ∈ S12.

Proof. Throughout, we use the standard copy of M12 that we gave in Section 2.3.
Calculations such as point stabilisers and membership are easily performed in a
computer algebra package such as Magma [4] or GAP [6].

By Corollary 3, k fixes a, b, c, d while h and k agree on α, β, γ, δ, where we have
{a, b, c, d, α, β, γ, δ} = {5, 6, 7, 8, 9, 10, 11, 12}. Now let α′ = αh = αk, β′ = βh = βk,
γ′ = γh = γk and δ′ = δh = δk. Thus the known values of the functions g, h, k, w
are given below.

i 1 2 3 4 a b c d α β γ δ
i.g = ig 1 2 3 4 a b c d α β γ δ
i.h = ih 1 2 3 4 α′ β′ γ′ δ′

i.k = ik a b c d α′ β′ γ′ δ′

i.w = iw 1 2 3 4 a b c d α′ β′ γ′ δ′

Now h is a permutation, so {1, 2, 3, 4}∩{α′, β′, γ′, δ′} = ∅, and k is also a permuta-
tion, so {a, b, c, d} ∩ {α′, β′, γ′, δ′} = ∅. Therefore {α′, β′, γ′, δ′} = {α, β, γ, δ}, and
hence w is a permutation. Thus h permutes {a, b, c, d} and k permutes {1, 2, 3, 4}.

In our standard copy of M12, the pointwise stabiliser of {1, 2, 3, 4} is a copy of
the quaternion group Q8, consisting of the eight permutations:

ι (5, 7)(6, 11)(8, 9)(10, 12)
(5, 6, 7, 11)(8, 10, 9, 12) (5, 11, 7, 6)(8, 12, 9, 10)
(5, 8, 7, 9)(6, 12, 11, 10) (5, 9, 7, 8)(6, 10, 11, 12)
(5, 12, 7, 10)(6, 9, 11, 8) (5, 10, 7, 12)(6, 8, 11, 9).

Now h is a non-identity permutation of this Q8, and the only four element subsets
of {5, 6, 7, 8, 9, 10, 11, 12} that can possibly be permuted by h are those which are
permuted by (5, 7)(6, 11)(8, 9)(10, 12), namely {5, 7, 6, 11}, {5, 7, 8, 9}, {5, 7, 10, 12},
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{6, 11, 8, 9}, {6, 11, 10, 12} and {8, 9, 10, 12}. The candidates for {a, b, c, d} and
{α, β, γ, δ} are to be found among these six four element subsets.

In fact if h has order 2, then there are six candidates for {a, b, c, d}, while if h
has order 4, there are just two candidates for {a, b, c, d} (one of the 4-cycles of h).
Having chosen h, and the subset {a, b, c, d} (wlog a < b < c < d), the set {α, β, γ, δ}
is uniquely determined (wlog α < β < γ < δ), and thus the elements α′, β′, γ′, δ′

are also uniquely determined. We have now determined the action of k on the eight
points a, b, c, d, α, β, γ, δ, and thus k is uniquely determined if such a k should exist.
Our count thus gives (at most) 1× 6 + 6× 2 = 18 tuples (g, h, k, w) satisfying the
conditions of the lemma.

In order to show that such a k exists, we conjugate the pair (h, {a, b, c, d}) by a
suitable power of π = (1, 4, 2)(6, 8, 12)(9, 10, 11) ∈ M12 so that

h ∈ {(5, 7)(6, 11)(8, 9)(10, 12), (5, 6, 7, 11)(8, 10, 9, 12), (5, 11, 7, 6)(8, 12, 9, 10)}
and {a, b, c, d} = {5, 7, 6, 11} or {8, 9, 10, 12}. We can then conjugate the pair
(h, {a, b, c, d}) by (5, 8, 7, 9)(6, 12, 11, 10) [in the above Q8] if necessary, so that
{a, b, c, d} = {5, 7, 6, 11}; this conjugation will invert h. Finally, we conjugate the
pair (h, {a, b, c, d}) by (1, 2)(3, 4)(6, 11)(8, 9) ∈ M12 if necessary, so that

h ∈ {(5, 7)(6, 11)(8, 9)(10, 12), (5, 6, 7, 11)(8, 10, 9, 12)}.
This conjugation leaves {a, b, c, d} = {5, 7, 6, 11} unaltered. These two remaining
cases force k and w as in the table below.

h {a, b, c, d} w k
(5, 7)(6, 11)(8, 9)(10, 12) {5, 7, 6, 11} (8, 9)(10, 12) (1, 4)(2, 3)(8, 9)(10, 12)
(5, 6, 7, 11)(8, 10, 9, 12) {5, 7, 6, 11} (8, 10, 9, 12) (1, 3, 4, 2)(8, 10, 9, 12)

In both cases, we have k ∈ M12. Since the possibilities for (h, {a, b, c, d}) are M12-
conjugate to cases where a k ∈ M12 exists, it follows that a k ∈ M12 exists for all
possibilities for (h, {a, b, c, d}).

We now have the tools necessary to prove our main theorem.

Theorem 5. The probability that a word containing 4 errors is decoded uniquely is
P(M12, 4) ≈ 0.967147.

Proof. Using the lemmas above, we count possible configurations as follows.
• The number of configurations (g, w) where g ∈ M12, w ∈ H12 and d(g, w) = 4

is |M12| ×
(
12
4

)
× 114 = 95040× 495× 14641.

• The number of configurations (g, h, w) where g, h ∈ M12, w ∈ H12 and
d(g, w) = d(h, w) = 4 is |M12| × 7

(
12
4

)
× 70 = 95040× 495× 490.

• The number of configurations (g, h, k, w) where g, h, k ∈ M12, w ∈ H12 and
d(g, w) = d(h, w) = d(k,w) = 4 is |M12| ×

(
12
4

)
× 18 = 95040× 495× 18.

Multiplying by g−1, we see that the numbers of each of the above configurations
in which g = ι are

(
12
4

)
×14641,

(
12
4

)
×490 and

(
12
4

)
×18 respectively. For i ∈ {1, 2, 3}

let ni be the number of w ∈ H12 such that d(ι, w) = 4 and w has exactly i nearest
neighbours in M12 (by Lemma 2 no such w has 4 or more nearest neighbours in
M12). We have:

n1 + n2 + n3 =
(
12
4

)
× 14641

n2 + 2n3 =
(
12
4

)
× 490

2n3 =
(
12
4

)
× 18.
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Solving these equations gives n1 = 14160
(
12
4

)
, n2 = 472

(
12
4

)
and n3 = 9

(
12
4

)
. Thus

the fraction of w at distance 4 from the identity which do not decode uniquely is

n2 + n3

n1 + n2 + n3
=

481
14641

≈ 0.032853.

Thus the probability P(M12, 4) that a given element recieved with 4 errors is guaran-
teed to decode correctly is approximately 0.967147, and Q(M12, 4) ≈ 0.032853.

A subtly different question concerns the case when an unknown element of M12

is transmitted and received with exactly 4 errors. For i ∈ {1, 2, 3} we let mi be the
number of w ∈ H12 such that d(w,M12) = 4. The equations we must now solve are:

m1 + 2m2 + 3m3 = |M12| ×
(
12
4

)
× 14641

2m2 + 6m3 = |M12| ×
(
12
4

)
× 490

6m3 = |M12| ×
(
12
4

)
× 18.

These equations yield (m1,m2,m3) = (14160C, 236C, 3C), where C = |M12| ×
(
12
4

)
.

The proportion of such w that are not uniquely decodable is:

m2 + m3

m1 + m2 + m3
=

239
14399

≈ 0.016598.

4. Words at larger distances. We now consider the case when we receive a word
that has accrued i > 5 errors, with a view to determining how many such words
decode correctly, ambiguously or incorrectly. Thus for all i > 5 we wish to determine
the values of P(M12, i), Q(M12, i) and R(M12, i). Some of these values for i = 5, 6, 7
were done by a computer search using GAP, and the other values were calculated
by hand.

Our search will consider those words w having distance i from the identity. Fur-
thermore, since M12 acts transitively on i-sets if i 6= 6, we shall assume that the
positions in which w differs from ι are {1, . . . , i}. For the case i = 6, we must con-
sider the cases when the positions on which w and ι differ is either {1, 2, 3, 4, 5, 6}
(a non-hexad in the standard S(5, 6, 12)) or {1, 2, 3, 4, 5, 7} (a special hexad). We
must also remember to take into account the fact that there are six times as many
non-hexads as hexads.

For each of the 11i possible w, we use the decoding algorithm given in [1] to find
all its nearest neighbours in M12, then determine whether w is green, yellow or red.
The raw results of our computer search for i = 5, 6, 7 are given below. (Case 6H is
when the error positions form a hexad, and Case 6N is when they do not.)

Case #Green #Yellow #Red Total
5 30202 118074 12775 115 = 161051

6H 132 337740 1433689 116 = 1771561
6N 66 348571 1422924 116 = 1771561
7 0 79286 19407885 117 = 19487171

These translate into (approximate) probabilities as shown below, where we have
also given separate conditional probabilities in the case i = 6 for when the error
positions do or do not form a hexad.
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Case i P(M12, i) Q(M12, i) R(M12, i)
5 0.187531 0.733147 0.079323

6H 0.000075 0.190645 0.809280
6N 0.000037 0.196759 0.803204
6 0.000043 0.195886 0.804072
7 0 0.004069 0.995931

For words w, we define |w| to be the number of symbols involved in w; thus
1 6 |w| 6 12 for w ∈ H12, and d(w,S12) = 12− |w|. If |w| > 5, say w has different
symbols in positions i1 < i2 < i3 < i4 < i5, then the 5-transitivity of M12 implies
that there is g ∈ M12 which matches w in those positions, and thus d(w,M12) 6 7.
Similarly, if |w| = m 6 5, then w has different symbols in positions i1, . . . , im,
and the m-transitivity of M12 forces d(w,M12) 6 12−m = d(w,S12) 6 d(w,M12),
whence d(w,M12) = 12−m. Moreover, if m 6 4 the m-point stabiliser is not trivial,
and there is more than one element of M12 agreeing with w at positions i1, . . . , im.
Therefore there are no green words for M12 at distance i > 8, and w is a yellow
word for M12 at distance i > 8 if and only if |w| = 12 − i. For distance i, we are
considering words w that terminate in i + 1, . . . , 12 at distance i from the identity,
and thus the number of yellow words is simply (12− i)i, out of a total of 11i such
words. Thus we get the following probabilities for i > 8.

i P(M12, i) Q(M12, i) R(M12, i)
8 0 48

118 ≈ 0.000306 0.999694

9 0 39

119 ≈ 8.35× 10−6 0.999992

10 0 210

1110 ≈ 3.95× 10−8 1.000000

11 0 1
1111 ≈ 3.50× 10−12 1.000000

12 0 0 1

5. Words at distance 7: reducing the search. The computer search to de-
termine the number of red, yellow and green words at distance i from ι increases
signicantly in difficulty with increasing i. Firstly, the number of cases we must
consider is 11i (or 2 × 116 when i = 6). Secondly, the amount of time required
to deal with each case using the decoding algorithm of [1] depends on the num-
ber of blocks in a (12, 5, i)-uncovering (or a (12, 7, i)-covering design, see [7]). For
i = 1, 2, 3, 4, 5, 6, 7 the sizes of the uncoverings we used were 2, 5, 11, 24, 59, 176, 792,
and the best known lower bounds (as of 31st May 2007) for the sizes of uncoverings
with these parameters are 2, 5, 11, 20, 55, 165, 792, see [7].

The computation for i = 7 took about 3 weeks of CPU time on ≈ 3 GHz com-
puters, a situation we found somewhat unsatisfactory. In contrast, each of the two
computations for i = 6 required about 9 to 10 hours of CPU time. However, we were
able to reduce the computation for i = 7 to less than 10 minutes by being able to
efficiently eliminate vast swathes of the search space that contained only red words.
It is possible that similar reductions may be made for the case i = 6. However, it
is likely that these will be less effective than those for i = 7. The authors did not
feel that it would be profitable to pursue this.

Lemma 6. There are no green words at distance 7 from ι. Thus P(M12, 7) = 0.

Proof. If d(w, ι) = 7 then |w| > 5. There are then two distinct 5-element subsets
{i1, i2, i3, i4, i5} and {j1, j2, j3, j4, j5} of {1, . . . , 12} such that w has distinct symbols
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at positions i1, . . . , i5 and at positions j1, . . . , j5. Let g, h ∈ M12 agree with w on
positions i1, . . . , i5 and j1, . . . , j5 respectively.

If g 6= h then w is certainly not green, while if g = h then w and g agree on at
least 6 positions, and so w is a red word.

We consider words w that agree with ι just on positions 8, 9, 10, 11, 12, and wish
to find out how many of these are yellow. The 57 = 78125 such w with |w| = 5 are all
yellow, and we exclude these from our search by requiring that jw /∈ {8, 9, 10, 11, 12}
for some j with 1 6 j 6 7. The following illustrates how we trimmed the search
space.

Suppose that 1w = 2 (this is one of 42 starting assumptions of the form jw = k
with 1 6 j, k 6 7 and j 6= k that we must consider). It appears that there are
116 = 1771561 such words to consider. However, w and (1, 2, 3, 7)(4, 6, 5, 12) ∈ M12

agree on positions 1, 8, 9, 10, 11. Thus w will be a red word if, for example, 2w = 3.
The following table gives some permutations of M12 (in list format), and the posi-
tions on which they are guaranteed to agree with w.

permutation positions
1 2 3 4 5 6 7 8 9 10 11 12 8, 9, 10, 11, 12
2 3 7 6 12 5 1 8 9 10 11 4 1, 8, 9, 10, 11
2 4 1 3 6 7 11 8 9 10 5 12 1, 8, 9, 10, 12
2 5 10 1 4 3 6 8 9 7 11 12 1, 8, 9, 11, 12
2 1 5 7 3 9 4 8 6 10 11 12 1, 8, 10, 11, 12
2 7 6 8 1 4 5 3 9 10 11 12 1, 9, 10, 11, 12

Therefore if 1w = 2 and w is yellow then we have:

2w ∈ {6, 8, 9, 10, 11, 12}, 3w ∈ {2, 4, 8, 9, 11, 12}, 4w ∈ {2, 5, 9, 10, 11, 12},
5w ∈ {2, 7, 8, 9, 10, 11}, 6w ∈ {1, 2, 8, 10, 11, 12}, 7w ∈ {2, 3, 8, 9, 10, 12},

which reduces the search space for such w to size 66 = 46656. We can then iterate
this process by considering in turn each of the six cases 2w = 6, 8, 9, 10, 11 or
12 (with 1w = 2 in all six cases). Each iteration of this process takes longer than
the previous one since at each stage many more permutations are generated that w
must avoid being distance 6 6 from.

We found 1161 yellow words w with |w| > 6 (and w agreeing with ι on just
{8, 9, 10, 11, 12}). Of these there were 1065 with |w| = 6, 96 with |w| = 7, and
none with |w| > 8. The program, and the data it produced, may be accessed at
http://www.maths.qmul.ac.uk/~jnb/Papers/DecM12/. The results agree with
those obtained from the rather lengthy earlier computation.

6. Conclusion. Combining the results of the previous sections, we exhibit the full
table of probabilities (all given to 6 decimal places) in Table 1. This is also shown
pictorially in Figure 1. From these, we conclude that even though M12 is a 3-
error correcting code, it is feasible to use it to correct 4 errors with an acceptable
probability of decoding uniquely. For 5 errors, M12 is not feasible as an error-
correcting code, as the probability P(M12, 5) is too small. However, the detection of
5 errors is feasible, as although the probability of decoding uniquely is fairly small,
the probability R(M12, 5) of decoding incorrectly is even smaller. From 6 errors
onwards, the use of M12 for either detection or correction is not feasible.
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i P(M12, i) Q(M12, i) R(M12, i)
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 0.967147 0.032853 0
5 0.187531 0.733147 0.079323
6 0.000043 0.195886 0.804072
7 0 0.004069 0.995931
8 0 0.000306 0.999694
9 0 0.000008 0.999992
10 0 0.000000 1.000000
11 0 0.000000 1.000000
12 0 0 1

Table 1. Probabilities of words of each type
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Figure 1. Percentage of words of each colour
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