A new family of modules with 2-dimensional 1-cohomology

John N. Bray, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS E-mail: J.N.Bray@qmul.ac.uk.

27th July 2007

Abstract

It is known that for finite simple groups it is possible for a faithful absolutely irreducible module to have 1-cohomology of dimension at least 3. However, even faithful absolutely irreducible modules with 2-dimensional 1-cohomology are rare. We exhibit a new infinite family of such modules.

1 Introduction

Over the past few decades, a number of first cohomology groups have been computed, see for example [1, 2, 8, 5, 6]. The first cohomology group $H^1(G; M)$ of a group G at a module M has two fundamental interpretations: first, it parametrises the complements of M in the split extension M:G of M by G; and second, it parametrises the extensions of M by the trivial G-module. In what follows we assume that M is a faithful absolutely irreducible module for G, since dim $H^1(G; M)$ can be made arbitrarily large if either of these conditions fails.

In most cases which have been calculated up to now, $H^1(G; M)$ has dimension 0 or 1, and in the few remaining cases it has dimension 2 or 3. The known examples of 3-dimensional 1-cohomology are given in Bray and Wilson [4] and Scott [9]. The two examples of [4] are explicit, whilst despite the infinitude of examples in [9], the results therein do not allow one to give an explicit example of a module with 3-dimensional 1-cohomology. The results of this paper were discovered when I was carrying out a systematic calculation of 1-cohomologies (and 2-cohomologies) of (absolutely) irreducible modules of simple (and almost simple) groups, in connection with the Web-Atlas project [10]. Many of the 2-dimensional 1-cohomologies seen have an exceptional feel to them, such as dim $H^1(A_6; \mathbb{F}_3^4) = 2$ (the smallest such example). During the course of this search I found that dim $H^1(L_3(7); \mathbb{F}_3^{55}) = 2$, while for other irreducible $L_3(7)$ -modules the 1-cohomology is at most 1-dimensional. This looked odd, especially when you compare the complexity of the Sylow 3-subgroup (3²) with that of the Sylow 7-subgroup (7¹⁺²), and led to the Main Theorem. The smallest example which is part of this series, namely that dim $H^1(L_3(4); \mathbb{F}_3^{19}) = 2$, was discovered earlier but somehow did not raise any eyebrows.

MAIN THEOREM. Let $n \ge 3$, let p be a prime such that $p \mid n$, let q be a prime power such that $q \equiv 1 \pmod{p}$, and let k be a field of characteristic p. Then $\dim_k \operatorname{H}^1(\operatorname{L}_n(q); M) = 2$ where M is a certain absolutely irreducible $k\operatorname{L}_n(q)$ -module of dimension $\frac{q^n-1}{q-1} - 2$. We obtain M as the non-trivial composition factor of the permutation module of degree $\frac{q^n-1}{q-1}$ for $\operatorname{L}_n(q)$ over k, corresponding to the action of $\operatorname{SL}_n(q)$ on the projective points (or hyperplanes) of the natural n-dimensional $\mathbb{F}_q\operatorname{SL}_n(q)$ -module.

In addition to the above family of cross characteristic examples, the following examples of 2-dimensional 1-cohomology in defining characteristic are also known. Cline, Jones, Parshall and Scott [8, 5] give the examples of $\Omega_{4m}^{\varepsilon}(q)$ for q even, q > 2 and $m \ge 2$ acting on a module M of dimension 2m(4m-1) - 2, where M is the non-trivial composition factor of $\Lambda^2(V)$, with V being a natural module of $\Omega_{4m}^{\varepsilon}(q)$. They also point out that the 'corresponding' (i.e. 26-dimensional) module of ${}^{3}D_{4}(q)$ for q even, q > 2 also has 2dimensional 1-cohomology. The above results probably hold when q = 2. For the groups $\Omega_{4m}^+(2), m \ge 2$ see [8, 5], while we have done explicit computations for the relevant modules of $\Omega_{4m}^-(2)$ for $4m \in \{8, 12, 16, 20, 24, 28\}$ and ${}^{3}D_{4}(2)$. In all cases, a subquotient of the tensor square of the natural module exhibits the 2-dimensional 1-cohomology.

Other than the above families of examples we know explicitly of only finitely many faithful absolutely irreducible modules for which the 1-cohomology is at least 2-dimensional.

2 Proof of the Main Theorem

Firstly, we establish some notation. The ATLAS [7] notation is used for group structures, with E_q denoting an elementary abelian group of order q. For G a group and k a field, we also use k to denote the trivial kG-module. If V, U and W are modules, we write $V \cong U.W$ to mean that V has a submodule (isomorphic to) U and $V/U \cong W$; and we write $V \cong U \cdot W$ if $V \cong U.W$ and U does not have a complement isomorphic to W. The standard results we quote here can be found, for example, in Benson's book [3] (which states them in more generality).

Our example involves a certain module of $L_n(q)$ in characteristic p, where $n \ge 3$, $p \mid n$ and $q \equiv 1 \pmod{p}$. We first recall some well-known facts about the groups $L_n(q) = \text{PSL}_n(q)$

2-dimensional 1-cohomology

and $\operatorname{SL}_n(q)$. Firstly, for $n \ge 2$ and $(n,q) \ne (2,2)$ or (2,3) the groups $\operatorname{L}_n(q)$ are simple and the groups $\operatorname{SL}_n(q)$ are perfect and quasi-simple. Secondly, the Schur multiplier of $\operatorname{SL}_n(q)$ is always trivial, except for the cases (n,q) = (2,4), (2,9), (3,2), (3,4) or (4,2), and the r'-part of the Schur multiplier of $\operatorname{SL}_n(q)$ is always trivial where r is the prime such that $r \mid q$.

It is known that the stabiliser of a projective point (i.e. 1-space) in $SL_n(q)$ is a subgroup H of shape $E_q^{n-1}: GL_{n-1}(q)$, which contains a subgroup $E_q^{n-1}: SL_{n-1}(q) \cong ASL_{n-1}(q)$ to index q-1. We note that H need not be isomorphic to $AGL_{n-1}(q)$; in particular, we have non-isomorphism in the cases of interest.¹ Since n and n-1 are coprime, the subgroup of scalars of $SL_n(q)$ intersects the said subgroup $ASL_{n-1}(q)$ trivially, and thus the image of this subgroup in any of the images $C.L_n(q)$ of $SL_n(q)$ is still isomorphic to $ASL_{n-1}(q)$.

So now let $n \ge 3$, $p \mid n, p \mid (q-1), G \cong \operatorname{SL}_n(q), H \cong \operatorname{E}_q^{n-1}:\operatorname{GL}_{n-1}(q)$ (the point stabiliser), and let k be a field of characteristic p. Let P be the permutation module over k of G on the cosets of H. Thus P is obtained by inducing the trivial kH-module up to G. Since $Z(G) \le H$, Z(G) acts trivially on P, and thus P is a (permutation) module for $\operatorname{L}_n(q)$. The dimension of P is $m := \frac{q^n-1}{q-1}$. Permutation modules for transitive groups have a unique trivial submodule, U say, generated by the all 1s vector $u = \sum_{i=1}^{m} e_i$; and a unique trivial quotient, whose kernel is the augmentation submodule, W say, where $W = \{\sum_{i=1}^{m} a_i e_i : a_i \in k \mid \sum_{i=1}^{m} a_i = 0\}$. We have $U \le W$ since $p \mid m$, and we let M := W/U. Now $\operatorname{SL}_n(q)$ is perfect and so there are no non-split modules of type $k \cdot k$ for $\operatorname{SL}_n(q)$, and thus M has no trivial submodules or quotients. From Clifford Theory we find that a faithful representation of $\operatorname{ASL}_{n-1}(q)$ in characteristic p has dimension at least $q^{n-1} - 1$, since $\operatorname{SL}_{n-1}(q)$ has a single orbit on non-zero vectors of (the dual of) its natural module. But $2(q^{n-1} - 1) > \dim M = \frac{q^n-1}{q-1} - 2$ and so M is absolutely irreducible. Therefore P is a uniserial module of shape $k \cdot M \cdot k$.

Now $\operatorname{SL}_n(q)$ is perfect, and so dim $\operatorname{H}^1(\operatorname{SL}_n(q); k) = 0$, and dim $\operatorname{H}^2(\operatorname{SL}_n(q); k)$ is the *p*-rank of the Schur multiplier of $\operatorname{SL}_n(q)$, which is 0. Now dim $\operatorname{H}^1(H; k) = 1$, which is the *p*rank of H/H'. The Eckmann–Shapiro Lemma then implies that dim $\operatorname{H}^1(\operatorname{SL}_n(q); P) = 1$. A well-known long exact sequence of cohomologies, applied to the permutation module $P \cong k \cdot M \cdot k$, with (trivial) submodule $U \cong k$ and quotient $Q \cong M \cdot k$ is given below. The dimensions of these cohomology groups for $\operatorname{SL}_n(q)$ are given below. (The dimensions for $\operatorname{L}_n(q)$ differ from these, and also depend on whether the *p*-part of q - 1 is greater than the *p*-part of *n*.)

$$\begin{array}{ccc} 0 \to \mathrm{H}^{0}(k) \to \mathrm{H}^{0}(P) \to \mathrm{H}^{0}(Q) \to \mathrm{H}^{1}(k) \to \mathrm{H}^{1}(P) \to \mathrm{H}^{1}(Q) \to \mathrm{H}^{2}(k) \to \cdots \\ 0 & 1 & 1 & 0 & \mathbf{0} & \mathbf{1} & a(=1) & \mathbf{0} \end{array}$$

¹We note that the action of $\operatorname{GL}_{n-1}(q)$ on E_q^{n-1} is the [dual of] the tensor product of the natural representation and the determinant representation. As a result $H \cong \operatorname{E}_q^{n-1}:\operatorname{GL}_{n-1}(q)$ is isomorphic to $\operatorname{AGL}_{n-1}(q)$ if and only if H has trivial centre, which is if and only if (n, q - 1) = 1. In the cases of interest, we have $(n, q - 1) \neq 1$, and thus $H \ncong \operatorname{AGL}_{n-1}(q)$.

We are interested in $a := \dim H^1(\mathrm{SL}_n(q); Q)$, and the emboldened figures, which we justified earlier, ensure that a = 1. There is no module $k \cdot k$ for $\mathrm{SL}_n(q)$ and thus $\dim H^1(\mathrm{SL}_n(q); M) = 2$. But any module $M \cdot k$ for $\mathrm{SL}_n(q)$ actually represents the quotient group $\mathrm{L}_n(q)$, since k is not a submodule of $M \otimes k^* \cong M$. (Alternatively, note that the centraliser algebra of the module $M \cdot k$ consists just of scalar matrices. Thus central elements of $\mathrm{SL}_n(q)$ act as scalars on $M \cdot k$, and since they act trivially on the quotient k of this, they act trivially on $M \cdot k$.) Therefore we conclude that $\dim H^1(\mathrm{L}_n(q); M) = 2$, thus completing the proof of the Main Theorem.

The corresponding construction does not work when n = 2 (and thus p = 2). This is because the module M is not absolutely irreducible, splitting into two (absolutely irreducible) non-isomorphic summands of dimension $\frac{1}{2}(q-1)$. This splitting always occurs over \mathbb{F}_4 , and will even occur over \mathbb{F}_2 if $q \equiv \pm 1 \pmod{8}$. The above argument gives dim $\mathrm{H}^1(\mathrm{L}_2(q); M) = 2$, and thus each constituent of M has 1-dimensional 1-cohomology.

Acknowledgements

We gratefully acknowledge the support of EPSRC grant GR/S41319. Robert Wilson has made suggestions that have improved the exposition of this paper.

References

- G. W. Bell. On the cohomology of the finite special linear groups. I, II. J. Algebra 54 (1978), 216–238, 239–259.
- [2] G. W. Bell. Cohomology of degree 1 and 2 of the Suzuki groups. Pacific J. Math. 75 (1978), 319–329.
- [3] D. J. Benson. Representations and Cohomology. I: Basic representation theory of finite groups and associative algebras. Second edition. *Cambridge studies in advanced mathematics* **30**. *Cambridge University Press* (1998).
- [4] J. N. Bray and R. A. Wilson. Examples of 3-dimensional 1-cohomology for absolutely irreducible modules of finite simple groups. *Submitted*.
- [5] E. Cline, B. Parshall and L. Scott. Cohomology of finite groups of Lie type. I. Inst. Hautes Études Sci. Publ. Math. 45 (1975), 169–191.
- [6] E. Cline, B. Parshall and L. Scott. Cohomology of finite groups of Lie type. II. J. Algebra 45 (1977), 182–198.
- [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. An ATLAS of Finite Groups. *Clarendon Press, Oxford* (1985; reprinted with corrections 2003).

2-dimensional 1-cohomology

- [8] W. Jones and B. Parshall. On the 1-cohomology of finite groups of Lie type. Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), pp. 313–328. Academic Press, New York, 1976.
- [9] L. L. Scott. Some new examples in 1-cohomology. J. Algebra 260 (2003), 416–425.
- [10] R. A. Wilson, S. J. Nickerson and J. N. Bray. Atlas of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/v3/.