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ON THE ORDERS OF AUTOMORPHISM GROUPS OF FINITE
GROUPS. II
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Abstract

In the Kourovka Notebook, Deaconescu asks if |AutG| > φ(|G|) for all finite groups G, where
φ denotes the Euler totient function; and whether G is cyclic whenever |AutG| = φ(|G|). In an
earlier paper we have answered both questions in the negative, and shown that |AutG|/φ(|G|)
can be made arbitrarily small. Here we show that these results remain true if G is restricted to
being perfect, or soluble.

1. The question, and general overview

Let φ denote the Euler totient function, so that φ(n) is the number of integers
m with 1 6 m 6 n such that m and n are coprime, and

φ(n)
n

=
r∏
i=1

pi − 1
pi

,

where p1 < p2 < . . . < pr are the prime factors of n. It is easy to see that for finite
abelian groups G, we have |AutG| > φ(|G|), with equality if and only if G is cyclic.

In [1] we showed that neither statement holds for arbitrary finite groups, thus
solving Problem 15.43 of the Kourovka Notebook [5].

On the other hand they hold (trivially) for finite simple groups (indeed for all
finite groups with trivial centre), and one is led to ask: For what classes of finite
groups do the statements hold?

A long-standing conjecture of Schenkman [6], that if G is a finite non-cyclic p-
group of order at least p3 then |G| divides |AutG|, would imply that both statements
hold for finite nilpotent groups. Indeed, this is known to hold for nilpotent groups
of class 2, see Schenkman [6].

In this paper we show that the statements do not hold for the class of perfect
groups, nor for the class of soluble groups. As in [1], we actually prove stronger
results:

Theorem 1. For all ε > 0 there exists a finite perfect group G such that
|AutG| < ε.φ(|G|).

Theorem 2. For all ε > 0 there exists a finite soluble group G such that
|AutG| < ε.φ(|G|).

Theorem 3. For all N ∈ N there exists a finite perfect group G with |G| > N
such that |AutG| = φ(|G|).
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Theorem 4. For all N ∈ N there exists a finite non-cyclic soluble group G with
|G| > N such that |AutG| = φ(|G|).

We were unable to resolve the case of supersoluble groups, but are marginally
inclined to the view that:

Conjecture. If G is a finite non-nilpotent supersoluble group, then |AutG| >
φ(|G|).

Conventions. Throughout this paper, we shall only consider finite groups.
The notation for group structures is based on that used in the Atlas [3]. The
notation Op(G), Op′(G), Op(G), AutG, and Out(G) is standard. The abbreviation
PIM stands for projective indecomposable module. If U and V are modules then
U · V denotes a non-split extension of U by V with U being the submodule and V
being the quotient.

2. Some modules and cohomology

We need some information about modules and cohomology of L2(p), especially
when p ≡ 7 (mod 8). The following information was established in [1]:

Lemma 5. For p prime and p ≡ 7 (mod 8) there are precisely two isomorphism
classes of F2L2(p)-modules 1 · U in which U is absolutely irreducible of dimension
1
2 (p− 1), and the 1 denotes the trivial module. These two modules are interchanged
by the non-trivial outer automorphism of L2(p), and both of these modules have
zero 1-cohomology. These two modules have the forms 1 · U1 and 1 · U2 where U1

and U2 are not isomorphic.

For all primes p there are just p irreducible modules of SL2(p) in characteristic p.
Their dimensions are all different, and at most p, and we label the SL2(p)-irreducible
of dimension i (1 6 i 6 p) as Vi. For p odd, the central involution of SL2(p) acts
trivially on Vi if and only if i is odd; in such cases we regard Vi as being an L2(p)
module. Of course, V1 is the trivial module for L2(p).

For p ≡ 3 (mod 4) the Brauer tree of the principal block of L2(p) in characteristic
p is a straight line with 1

2 (p+ 1) nodes and diagram

s s s s s sg
1 p− 1 p+ 1 p− 1 p+ 1 1

2 (p− 1)

V1 Vp−2 V3 V 1
2 (p−1)

where we have labelled the nodes with the degrees of ordinary characters to which
they correspond and we have labelled the edges with their corresponding p-modular
irreducibles. From the Brauer tree one reads off the PIMs

V1 · Vp−2 · V1 and Vp−2 · (V1 ⊕ V3) · Vp−2

for all primes p > 7 with p ≡ 3 (mod 4). (In fact, these PIM structures are valid for
all primes p > 5.) Note that the Vi and all of the PIMs for L2(p) (and also SL2(p))
can be realised over Fp.

Let W be the FpL2(p)-module (V1 ⊕ V3) · Vp−2 (with simple head). So W is a
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quotient of the PIM Vp−2 · (V1 ⊕ V3) · Vp−2 and therefore is unique. One can also
read off from the PIMs that W has zero 1-cohomology whenever p > 7.

For p prime and p ≡ 7 (mod 8), we define Jp to be Jp ∼= (2(p+1)/2×pp+2):L2(p), in
which the complementary L2(p) act on Op(Jp) as the module W ∼= (1⊕V3)·Vp−2 and
on O2(Jp) as the module 1 ·U1 of Lemma 5. The groups Jp/Op(Jp) are isomorphic
to the groups Mp we constructed in [1].

3. Perfect groups

In this section, we construct infinite series of finite perfect groups which prove
Theorems 1 and 3. We let r > 11 be a prime, and define G to be the direct product
of certain perfect groups Bp for each prime p between 3 and r inclusive:

G =
∏
p∈π

Bp =
r∏

p=3, p prime

Bp,

where π is the set of odd primes not exceeding r. Firstly, we take B3
∼= 36 :M11,

where O3(B3) when regarded as an F3M11-module is a uniserial module of shape
1 · 5a (this module is isomorphic to the unique 6-dimensional submodule of the
F3-permutation module of M11 on the 12 cosets of L2(11)). Note also that the
composition factor 5a is absolutely irreducible. We have:

Lemma 6. The F3M11-module 1 · 5a has zero 1-cohomology.

Proof. This is an easy calculation using Magma [2]. Alternatively, the trivial
module has zero 1-cohomology since M11 is perfect, and it can be shown that the
module 5a does not occur in the second Loewy layer of the trivial PIM. Thus
both composition factors of 1 · 5a have trivial 1-cohomology, and so does the whole
module.

Lemma 7. If p = 3, so that Bp = B3
∼= 36 :M11, then Bp = B3 has outer

automorphism group of order 2. Thus |AutBp| = 2
3 |Bp| =

p−1
p |Bp|.

Proof. Since O3(B3) is a characteristic subgroup of B3, any automorphism of B3

permutes the complements to O3(B3) in B3. Now let S denote a complementary
M11 in B3. Since we have ensured that the F3M11-module O3(B3) has zero 1-
cohomology, we may assume our automorphism, α say, normalises S. But M11 has
trivial outer automorphism group, and adjusting α by an inner automorphism that
is conjugation by an element of S, we may assume that α centralises S. So now α
is an F3S-module automorphism of O3(B3) ∼= 1 · 5a, and is thus a non-zero scalar.
There are two of these and so |OutBp| = 2. In fact, AutBp ∼= 35 :(M11 × 2).

For p > 5 and p 6≡ 7 (mod 8), we take Bp ∼= p1+2
+ :SL2(p). For p > 5 and

p ≡ 7 (mod 8), we take Bp ∼= p1+2
+ :SL2(p) or Bp ∼= Jp ∼= (2(p+1)/2 × pp+2):L2(p),

the group we constructed in Section 2 (we are free to choose either; this choice is
necessary in order to prove Theorem 3).

The group p1+2
+ :SL2(p) has a centre of order p, and is isomorphic to a vector

stabiliser in the natural representation of Sp4(p).
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Lemma 8. Let H = N :K and let K act faithfully on N . Suppose α ∈ AutH
centralises N and normalises K. Then α centralises K. (So α = 1.)

Proof. For all g ∈ N , k ∈ K we have (gk)α = gk since gk ∈ N . On the other
hand (gk)α = (gα)(kα) = g(kα). So for all g ∈ N , k ∈ K we have gk(kα)−1

= g,
whence kα = k since K acts faithfully on N .

Lemma 9. For all primes p > 5 we have Aut(p1+2
+ :SL2(p)) ∼= p2 :GL2(p). So if

Bp ∼= p1+2
+ :SL2(p) we have |AutBp| = p−1

p |Bp|.

Proof. The 1-space stabiliser in Sp4(p) is a group p1+2
+ :GL2(p) which induces a

group p2 :GL2(p) of automorphisms on its normal subgroup p1+2
+ :SL2(p).

The group p1+2
+ :SL2(p) contains exactly p2 involutions, which are permuted faith-

fully by the above group p2 :GL2(p). Each of these involutions has centraliser of
shape p×SL2(p), and these define the p2 complements SL2(p) [by taking the Op or
the derived subgroup]. Moreover, these involutions generate p1+2

+ :2, and support a
natural affine plane structure; three involutions are collinear in this affine plane if
and only if they generate a subgroup isomorphic to D2p.

We already see the full automorphism group p2 :GL2(p) of this affine plane, so the
only way the automorphism group of p1+2

+ :SL2(p) could be any bigger is if there
were a non-trivial kernel, i.e. an automorphism centralising all p2 involutions. Such
an automorphism would have to normalise, and therefore by Lemma 8 centralise,
each of the complements, as well as centralising the group p1+2

+ :2 generated by
the involutions. Therefore it is the trivial automorphism on each complementary
SL2(p), and hence on p1+2

+ :SL2(p), and the lemma follows.

Lemma 10. If p ≡ 7 (mod 8) and H is the group Jp ∼= (2(p+1)/2 × pp+2):L2(p)
we constructed in Section 2, then AutH ∼= (2(p−1)/2 × pp+1):(L2(p)× Cp−1). So if
Bp ∼= Jp we have |AutBp| = 1

2
p−1
p |Bp|.

Proof. The elementary abelian subgroups O2(H) and Op(H) are characteristic
in H; therefore K := O2(H) × Op(H) is also characteristic in H. Since O2(H)
and Op(H) both have zero 1-cohomology as L2(p)-modules (see Section 2), H has
just one conjugacy class of complementary subgroups L2(p). So let α ∈ AutH
and let S be a complementary subgroup L2(p). Modulo inner automorphisms, α
normalises S. Now O2(H) when regarded as an F2S-module does not admit the
non-trivial outer automorphism of S ∼= L2(p), see Lemma 5. So α induces an inner
automorphism when restricted to S, and adjusting by an inner automorphism of
H that is conjugation by an element of S, we may assume that α centralises S.
So now α induces an F2S-module automorphism on O2(H) and an FpS-module
automorphism on Op(H), and both of these are scalars. Since H ∼= Jp has centre
of order 2p, the result follows.

Lemma 11. For all primes p with 3 6 p 6 r, the groups Bp are characteristic
in G.

Proof. Let π be the set of all primes between 3 and r inclusive. Let N = F(G),
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the Fitting subgroup of G, so that N is characteristic in G. Then

G/N ∼=
∏
p∈π

Sp,

where S3
∼= M11 and Sp ∼= L2(p) whenever p > 5. So G/N has a unique normal

subgroup Np/N such that Np/N ∼= Sp, and for all p we get that Np is characteristic
in G. In fact

Np = Bp ×
∏
q∈π′

O{2,q}(Bq),

where π′ = π \ {p}, with the O{2,q}(Bq) being nilpotent groups of class at most 2.
Therefore Bp = N ′′p is a characteristic subgroup of G.

Since all of the Bp are characteristic in G, we have AutG ∼=
∏
p∈π AutBp. We

have also established for all p ∈ π that |AutBp| = p−1
p |Bp| or 1

2
p−1
p |Bp|, with the

latter case occurring if and only if Bp ∼= Jp. Therefore we have

|AutG|
|G|

=
1

2m
×
∏
p∈π

p− 1
p

,

where m is the number of primes p > 3 for which Bp ∼= Jp. Now when p > 3 the
largest prime divisor of |Bp| is p, and the primes dividing |B3| are 2, 3, 5 and 11.
But r > 11, so the primes dividing |G| are precisely the primes that do not exceed
r, and thus we have

|AutG| =
1

2m−1
× 1

2
×
∏
p∈π

p− 1
p
× |G| =

1
2m−1

× φ(|G|).

When m = 1 this gives |AutG| = φ(|G|). We now invoke Dirichlet’s Theorem that
there are infinitely many primes p with p ≡ 7 (mod 8) to complete the proofs of
Theorems 1 and 3.

Remark. It is convenient but not essential to take all odd primes up to r in
the definition of G. But every odd prime dividing |G| must be one of these defining
primes. To this end, let π be a set of odd primes such that 3, 5, 11 ∈ π and if p ∈ π
then q ∈ π whenever q is an odd prime factor of p − 1 or p + 1. Let the Bp be as
above. Then the group

G =
∏
p∈π

Bp

satisfies |AutG| = 21−mφ(|G|) where m is the number of p ∈ π such that Bp ∼=
(2(p+1)/2 × pp+2):L2(p).

4. Soluble groups

In this section, we construct infinite series of finite soluble groups in order to
prove Theorems 2 and 4.

We define B3 to be the unique group of shape 31+2
+ :4 with centre of order 3; this

group is SmallGroup(108,15) in various versions of Magma [2], including Version
2.10. Let π be a finite non-empty set of primes such that p ≡ 1 or 7 (mod 8) for all
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p ∈ π, and let π′ = π ∪ {3}. We shall consider the groups:

G =
∏
p∈π′

Bp ∼=

(∏
p∈π

p1+2
+ :2·S−4

)
× 31+2

+ :4,

where Bp ∼= p1+2
+ :2·S−4 for all p ∈ π and 2·S−4 denotes the proper double cover of

S4 in which transpositions do not lift to involutions.
It is well-known, see Dickson [4], that L2(p) contains subgroups isomorphic to

S4 if and only if p ≡ ±1 (mod 8). Such a subgroup is unique up to conjugacy in
PGL2(p), and is also self-normalising in PGL2(p). Now the double cover SL2(p) of
L2(p) contains just one involution, namely its central one, and so the preimage 2.S4

in SL2(p) is 2·S−4 . Thus the group Bp ∼= p1+2
+ :2·S−4 exists and has centre of order

p. Note that the primes dividing |G| are precisely those in the set {2, 3} ∪ π.

Lemma 12. For all p ∈ π, the groups Bp are characteristic in G.

Proof. Let π′′ := (π ∪ {3}) \ {p} = π′ \ {p}. The group O2′(G) is the direct
product of the subgroups Wp := Op(Bp) ∼= p1+2

+ . We have

O{2,p}′(G) = Op′(O2′(G)) =
∏
q∈π′′

Wq.

Thus we calculate that

H := CG(Op′(O2′(G))) = Bp ×
∏
q∈π′′

Z(Wq) ∼= p1+2
+ :2·S−4 ×

∏
q∈π′′

Cq.

Now Bp is characteristic in H, since it is the subgroup generated by the elements
of order 4. Since H is a characteristic subgroup of G we conclude that Bp is also.

Lemma 13. The group B3 is also characteristic in G.

Proof. This proof is very similar to the proof of Lemma 12, and we use the
notation Wq from the proof of that lemma here. The group

H := CG(O3′(O2′(G))) = B3 ×
∏
q∈π

Z(Wq) ∼= 31+2
+ :4×

∏
q∈π

Cq

is a characteristic subgroup of G. Now Bp is characteristic in H, since it is the
subgroup generated by the elements of order 4. Since H is a characteristic subgroup
of G we conclude that Bp is also.

Lemma 14. For all p ∈ π, we have AutBp ∼= p2 :(2·S−4 ◦ Cp−1). So for all such
primes p we have |AutBp| = 1

2
p−1
p |Bp|.

Proof. We adapt the proof of Lemma 9. First note that H = Bp ∼= p1+2
+ :2·S−4

embeds in p1+2
+ :GL2(p), in which its normaliser is p1+2

+ :(2·S−4 ◦Cp−1), and therefore
its automorphism group contains p2 :(2·S−4 ◦ Cp−1).

Note that the latter group acts transitively and faithfully on the p2 involutions in
H, so if we have any further automorphism α, we may assume α fixes one of these
involutions, say z. Therefore α fixes CH(z) ∼= p × 2·S−4 , and therefore normalises
the corresponding subgroup K = Op(CH(z)) ∼= 2·S−4 of H.

Now both α and K act on the affine plane defined by the p2 involutions (as in
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Lemma 9), and both fix the same point, which we can regard as the origin. In the
resulting action on the vector space of order p2, the image of α normalises the image
of K inside GL2(p) (indeed, K :〈α〉 acts on this vector space). But this action of
K is faithful and NGL2(p)(2·S−4 ) ∼= 2·S−4 ◦ Cp−1. But we have already seen a group
p2 :(2·S−4 ◦Cp−1) of automorphisms of H acting faithfully on the affine plane, and so
we may assume that α acts trivially on the affine plane. In other words, α centralises
all p2 involutions in H, so centralises the group p1+2

+ :2 which they generate.
We now know that α centralises p1+2

+ , and normalises a complementary 2·S−4 .
Therefore, by Lemma 8, α is the trivial automorphism of H. This completes the
proof of the lemma.

An easy calculation gives AutB3
∼= 32 :SD16. Since all of the Bp are characteristic

in G, we obtain AutG ∼=
∏
p∈π∪{3}AutBp. Therefore we have

|AutG|
|G|

=
4
3
×
(

1
2

)|π|
×
∏
p∈π

p− 1
p

=
1

2|π|−2
× φ(|G|)
|G|

,

and so
|AutG|
φ(|G|)

=
1

2|π|−2
.

When |π| = 2 this gives |AutG| = φ(|G|). Dirichlet’s Theorem tells us that π can
be made arbitrarily large, thus proving Theorem 2, and also that there are infinitely
many size 2 possibilities for π, thus proving Theorem 4.

Remark. In the above construction for G we can replace the group B3 by the
cyclic group of order 3, in which case |AutG| = 21−|π|φ(|G|). However the proofs
are slightly different. The smallest non-cyclic group G we know of that satisfies
|AutG| = φ(|G|) is now the group G ∼= 3 × 71+2

+ :2·S−4 of order 49392, narrowly
beating the example 24 :L3(2)× 3× 7 of order 56448 that we gave in [1].

Acknowledgements. We are grateful to Chris Parker for helping us simplify some
of the proofs in this paper.
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