ON THE ORDERS OF AUTOMORPHISM GROUPS OF FINITE GROUPS. II

JOHN N. BRAY AND ROBERT A. WILSON

Abstract

In the Kourovka Notebook, Deaconescu asks if $|\operatorname{Aut} G| \geqslant \phi(|G|)$ for all finite groups G, where ϕ denotes the Euler totient function; and whether G is cyclic whenever $|\operatorname{Aut} G| = \phi(|G|)$. In an earlier paper we have answered both questions in the negative, and shown that $|\operatorname{Aut} G|/\phi(|G|)$ can be made arbitrarily small. Here we show that these results remain true if G is restricted to being perfect, or soluble.

1. The question, and general overview

Let ϕ denote the Euler totient function, so that $\phi(n)$ is the number of integers m with $1 \leq m \leq n$ such that m and n are coprime, and

$$\frac{\phi(n)}{n} = \prod_{i=1}^{r} \frac{p_i - 1}{p_i},$$

where $p_1 < p_2 < \ldots < p_r$ are the prime factors of n. It is easy to see that for finite abelian groups G, we have $|\operatorname{Aut} G| \ge \phi(|G|)$, with equality if and only if G is cyclic.

In [1] we showed that neither statement holds for arbitrary finite groups, thus solving Problem 15.43 of the Kourovka Notebook [5].

On the other hand they hold (trivially) for finite simple groups (indeed for all finite groups with trivial centre), and one is led to ask: For what classes of finite groups do the statements hold?

A long-standing conjecture of Schenkman [6], that if G is a finite non-cyclic p-group of order at least p^3 then |G| divides $|\operatorname{Aut} G|$, would imply that both statements hold for finite nilpotent groups. Indeed, this is known to hold for nilpotent groups of class 2, see Schenkman [6].

In this paper we show that the statements do not hold for the class of perfect groups, nor for the class of soluble groups. As in [1], we actually prove stronger results:

Theorem 1. For all $\varepsilon > 0$ there exists a finite perfect group G such that $|\operatorname{Aut} G| < \varepsilon.\phi(|G|)$.

Theorem 2. For all $\varepsilon > 0$ there exists a finite soluble group G such that $|\operatorname{Aut} G| < \varepsilon.\phi(|G|)$.

THEOREM 3. For all $N \in \mathbb{N}$ there exists a finite perfect group G with |G| > N such that $|\operatorname{Aut} G| = \phi(|G|)$.

THEOREM 4. For all $N \in \mathbb{N}$ there exists a finite non-cyclic soluble group G with |G| > N such that $|\operatorname{Aut} G| = \phi(|G|)$.

We were unable to resolve the case of supersoluble groups, but are marginally inclined to the view that:

Conjecture. If G is a finite non-nilpotent supersoluble group, then $|\operatorname{Aut} G| > \phi(|G|)$.

CONVENTIONS. Throughout this paper, we shall only consider finite groups. The notation for group structures is based on that used in the ATLAS [3]. The notation $O_p(G)$, $O_{p'}(G)$, $O^p(G)$, Aut G, and Out(G) is standard. The abbreviation PIM stands for projective indecomposable module. If U and V are modules then $U \cdot V$ denotes a non-split extension of U by V with U being the submodule and V being the quotient.

2. Some modules and cohomology

We need some information about modules and cohomology of $L_2(p)$, especially when $p \equiv 7 \pmod{8}$. The following information was established in [1]:

LEMMA 5. For p prime and $p \equiv 7 \pmod 8$ there are precisely two isomorphism classes of $\mathbb{F}_2L_2(p)$ -modules $1 \cdot U$ in which U is absolutely irreducible of dimension $\frac{1}{2}(p-1)$, and the 1 denotes the trivial module. These two modules are interchanged by the non-trivial outer automorphism of $L_2(p)$, and both of these modules have zero 1-cohomology. These two modules have the forms $1 \cdot U_1$ and $1 \cdot U_2$ where U_1 and U_2 are not isomorphic.

For all primes p there are just p irreducible modules of $SL_2(p)$ in characteristic p. Their dimensions are all different, and at most p, and we label the $SL_2(p)$ -irreducible of dimension i ($1 \le i \le p$) as V_i . For p odd, the central involution of $SL_2(p)$ acts trivially on V_i if and only if i is odd; in such cases we regard V_i as being an $L_2(p)$ module. Of course, V_1 is the trivial module for $L_2(p)$.

For $p \equiv 3 \pmod{4}$ the Brauer tree of the principal block of $L_2(p)$ in characteristic p is a straight line with $\frac{1}{2}(p+1)$ nodes and diagram

where we have labelled the nodes with the degrees of ordinary characters to which they correspond and we have labelled the edges with their corresponding p-modular irreducibles. From the Brauer tree one reads off the PIMs

$$V_1 \cdot V_{p-2} \cdot V_1$$
 and $V_{p-2} \cdot (V_1 \oplus V_3) \cdot V_{p-2}$

for all primes $p \ge 7$ with $p \equiv 3 \pmod{4}$. (In fact, these PIM structures are valid for all primes $p \ge 5$.) Note that the V_i and all of the PIMs for $L_2(p)$ (and also $SL_2(p)$) can be realised over \mathbb{F}_p .

Let W be the $\mathbb{F}_p L_2(p)$ -module $(V_1 \oplus V_3) \cdot V_{p-2}$ (with simple head). So W is a

quotient of the PIM $V_{p-2} \cdot (V_1 \oplus V_3) \cdot V_{p-2}$ and therefore is unique. One can also read off from the PIMs that W has zero 1-cohomology whenever $p \geqslant 7$.

For p prime and $p \equiv 7 \pmod 8$, we define J_p to be $J_p \cong (2^{(p+1)/2} \times p^{p+2}) : L_2(p)$, in which the complementary $L_2(p)$ act on $O_p(J_p)$ as the module $W \cong (1 \oplus V_3) \cdot V_{p-2}$ and on $O_2(J_p)$ as the module $1 \cdot U_1$ of Lemma 5. The groups $J_p/O_p(J_p)$ are isomorphic to the groups M_p we constructed in [1].

3. Perfect groups

In this section, we construct infinite series of finite perfect groups which prove Theorems 1 and 3. We let $r \ge 11$ be a prime, and define G to be the direct product of certain perfect groups B_p for each prime p between 3 and r inclusive:

$$G = \prod_{p \in \pi} B_p = \prod_{p=3, p \text{ prime}}^r B_p,$$

where π is the set of odd primes not exceeding r. Firstly, we take $B_3 \cong 3^6$:M₁₁, where O₃(B_3) when regarded as an \mathbb{F}_3 M₁₁-module is a uniserial module of shape $1 \cdot 5a$ (this module is isomorphic to the unique 6-dimensional submodule of the \mathbb{F}_3 -permutation module of M₁₁ on the 12 cosets of L₂(11)). Note also that the composition factor 5a is absolutely irreducible. We have:

Lemma 6. The \mathbb{F}_3M_{11} -module $1 \cdot 5a$ has zero 1-cohomology.

Proof. This is an easy calculation using Magma [2]. Alternatively, the trivial module has zero 1-cohomology since M_{11} is perfect, and it can be shown that the module 5a does not occur in the second Loewy layer of the trivial PIM. Thus both composition factors of $1 \cdot 5a$ have trivial 1-cohomology, and so does the whole module

LEMMA 7. If p=3, so that $B_p=B_3\cong 3^6\colon M_{11}$, then $B_p=B_3$ has outer automorphism group of order 2. Thus $|\operatorname{Aut} B_p|=\frac{2}{3}|B_p|=\frac{p-1}{p}|B_p|$.

Proof. Since $O_3(B_3)$ is a characteristic subgroup of B_3 , any automorphism of B_3 permutes the complements to $O_3(B_3)$ in B_3 . Now let S denote a complementary M_{11} in B_3 . Since we have ensured that the \mathbb{F}_3M_{11} -module $O_3(B_3)$ has zero 1-cohomology, we may assume our automorphism, α say, normalises S. But M_{11} has trivial outer automorphism group, and adjusting α by an inner automorphism that is conjugation by an element of S, we may assume that α centralises S. So now α is an \mathbb{F}_3S -module automorphism of $O_3(B_3) \cong 1 \cdot 5a$, and is thus a non-zero scalar. There are two of these and so $|\operatorname{Out} B_p| = 2$. In fact, $\operatorname{Aut} B_p \cong 3^5 : (M_{11} \times 2)$.

For $p \ge 5$ and $p \not\equiv 7 \pmod 8$, we take $B_p \cong p_+^{1+2}: \operatorname{SL}_2(p)$. For $p \ge 5$ and $p \equiv 7 \pmod 8$, we take $B_p \cong p_+^{1+2}: \operatorname{SL}_2(p)$ or $B_p \cong J_p \cong (2^{(p+1)/2} \times p^{p+2}): \operatorname{L}_2(p)$, the group we constructed in Section 2 (we are free to choose either; this choice is necessary in order to prove Theorem 3).

necessary in order to prove Theorem 3). The group $p_+^{1+2}: \operatorname{SL}_2(p)$ has a centre of order p, and is isomorphic to a vector stabiliser in the natural representation of $\operatorname{Sp}_4(p)$.

Lemma 8. Let H = N:K and let K act faithfully on N. Suppose $\alpha \in \operatorname{Aut} H$ centralises N and normalises K. Then α centralises K. (So $\alpha = 1$.)

Proof. For all $g \in N$, $k \in K$ we have $(g^k)\alpha = g^k$ since $g^k \in N$. On the other hand $(g^k)\alpha = (g\alpha)^{(k\alpha)} = g^{(k\alpha)}$. So for all $g \in N$, $k \in K$ we have $g^{k(k\alpha)^{-1}} = g$, whence $k\alpha = k$ since K acts faithfully on N.

LEMMA 9. For all primes $p \ge 5$ we have $\operatorname{Aut}(p_+^{1+2}:\operatorname{SL}_2(p)) \cong p^2:\operatorname{GL}_2(p)$. So if $B_p \cong p_+^{1+2}:\operatorname{SL}_2(p)$ we have $|\operatorname{Aut} B_p| = \frac{p-1}{p}|B_p|$.

Proof. The 1-space stabiliser in $\operatorname{Sp}_4(p)$ is a group $p_+^{1+2}:\operatorname{GL}_2(p)$ which induces a group $p^2:\operatorname{GL}_2(p)$ of automorphisms on its normal subgroup $p_+^{1+2}:\operatorname{SL}_2(p)$.

The group p_+^{1+2} :SL₂(p) contains exactly p^2 involutions, which are permuted faithfully by the above group p^2 :GL₂(p). Each of these involutions has centraliser of shape $p \times \text{SL}_2(p)$, and these define the p^2 complements SL₂(p) [by taking the O^p or the derived subgroup]. Moreover, these involutions generate p_+^{1+2} :2, and support a natural affine plane structure; three involutions are collinear in this affine plane if and only if they generate a subgroup isomorphic to D_{2p} .

We already see the full automorphism group $p^2:\operatorname{GL}_2(p)$ of this affine plane, so the only way the automorphism group of $p_+^{1+2}:\operatorname{SL}_2(p)$ could be any bigger is if there were a non-trivial kernel, i.e. an automorphism centralising all p^2 involutions. Such an automorphism would have to normalise, and therefore by Lemma 8 centralise, each of the complements, as well as centralising the group $p_+^{1+2}:2$ generated by the involutions. Therefore it is the trivial automorphism on each complementary $\operatorname{SL}_2(p)$, and hence on $p_+^{1+2}:\operatorname{SL}_2(p)$, and the lemma follows.

LEMMA 10. If $p \equiv 7 \pmod 8$ and H is the group $J_p \cong (2^{(p+1)/2} \times p^{p+2})$: $L_2(p)$ we constructed in Section 2, then $\operatorname{Aut} H \cong (2^{(p-1)/2} \times p^{p+1})$: $(L_2(p) \times C_{p-1})$. So if $B_p \cong J_p$ we have $|\operatorname{Aut} B_p| = \frac{1}{2} \frac{p-1}{p} |B_p|$.

Proof. The elementary abelian subgroups $O_2(H)$ and $O_p(H)$ are characteristic in H; therefore $K:=O_2(H)\times O_p(H)$ is also characteristic in H. Since $O_2(H)$ and $O_p(H)$ both have zero 1-cohomology as $L_2(p)$ -modules (see Section 2), H has just one conjugacy class of complementary subgroups $L_2(p)$. So let $\alpha\in Aut\,H$ and let S be a complementary subgroup $L_2(p)$. Modulo inner automorphisms, α normalises S. Now $O_2(H)$ when regarded as an \mathbb{F}_2S -module does not admit the non-trivial outer automorphism of $S\cong L_2(p)$, see Lemma 5. So α induces an inner automorphism when restricted to S, and adjusting by an inner automorphism of H that is conjugation by an element of S, we may assume that α centralises S. So now α induces an \mathbb{F}_2S -module automorphism on $O_2(H)$ and an \mathbb{F}_pS -module automorphism on $O_p(H)$, and both of these are scalars. Since $H\cong J_p$ has centre of order 2p, the result follows.

LEMMA 11. For all primes p with $3 \leq p \leq r$, the groups B_p are characteristic in G.

Proof. Let π be the set of all primes between 3 and r inclusive. Let N = F(G),

the Fitting subgroup of G, so that N is characteristic in G. Then

$$G/N \cong \prod_{p \in \pi} S_p,$$

where $S_3 \cong M_{11}$ and $S_p \cong L_2(p)$ whenever $p \geqslant 5$. So G/N has a unique normal subgroup N_p/N such that $N_p/N \cong S_p$, and for all p we get that N_p is characteristic in G. In fact

$$N_p = B_p \times \prod_{q \in \pi'} \mathcal{O}_{\{2,q\}}(B_q),$$

where $\pi' = \pi \setminus \{p\}$, with the $\mathcal{O}_{\{2,q\}}(B_q)$ being nilpotent groups of class at most 2. Therefore $B_p = N_p''$ is a characteristic subgroup of G.

Since all of the B_p are characteristic in G, we have $\operatorname{Aut} G \cong \prod_{p \in \pi} \operatorname{Aut} B_p$. We have also established for all $p \in \pi$ that $|\operatorname{Aut} B_p| = \frac{p-1}{p} |B_p|$ or $\frac{1}{2} \frac{p-1}{p} |B_p|$, with the latter case occurring if and only if $B_p \cong J_p$. Therefore we have

$$\frac{|\mathrm{Aut}\,G|}{|G|}\,=\,\frac{1}{2^m}\times\prod_{p\in\pi}\frac{p-1}{p},$$

where m is the number of primes p>3 for which $B_p\cong J_p$. Now when p>3 the largest prime divisor of $|B_p|$ is p, and the primes dividing $|B_3|$ are 2, 3, 5 and 11. But $r\geqslant 11$, so the primes dividing |G| are precisely the primes that do not exceed r, and thus we have

$$|\operatorname{Aut} G| = \frac{1}{2^{m-1}} \times \frac{1}{2} \times \prod_{p \in \pi} \frac{p-1}{p} \times |G| = \frac{1}{2^{m-1}} \times \phi(|G|).$$

When m=1 this gives $|\operatorname{Aut} G|=\phi(|G|)$. We now invoke Dirichlet's Theorem that there are infinitely many primes p with $p\equiv 7\pmod 8$ to complete the proofs of Theorems 1 and 3.

REMARK. It is convenient but not essential to take all odd primes up to r in the definition of G. But every odd prime dividing |G| must be one of these defining primes. To this end, let π be a set of odd primes such that $3, 5, 11 \in \pi$ and if $p \in \pi$ then $q \in \pi$ whenever q is an odd prime factor of p-1 or p+1. Let the B_p be as above. Then the group

$$G = \prod_{p \in \pi} B_p$$

satisfies $|\operatorname{Aut} G| = 2^{1-m}\phi(|G|)$ where m is the number of $p \in \pi$ such that $B_p \cong (2^{(p+1)/2} \times p^{p+2}): L_2(p)$.

4. Soluble groups

In this section, we construct infinite series of finite soluble groups in order to prove Theorems 2 and 4.

We define B_3 to be the unique group of shape $3^{1+2}_+:4$ with centre of order 3; this group is SmallGroup(108,15) in various versions of MAGMA [2], including Version 2.10. Let π be a finite non-empty set of primes such that $p \equiv 1$ or 7 (mod 8) for all

 $p \in \pi$, and let $\pi' = \pi \cup \{3\}$. We shall consider the groups:

$$G = \prod_{p \in \pi'} B_p \cong \left(\prod_{p \in \pi} p_+^{1+2} : 2 \cdot S_4^- \right) \times 3_+^{1+2} : 4,$$

where $B_p \cong p_+^{1+2}: 2 \cdot S_4^-$ for all $p \in \pi$ and $2 \cdot S_4^-$ denotes the proper double cover of S_4 in which transpositions do not lift to involutions.

It is well-known, see Dickson [4], that $L_2(p)$ contains subgroups isomorphic to S_4 if and only if $p \equiv \pm 1 \pmod{8}$. Such a subgroup is unique up to conjugacy in $PGL_2(p)$, and is also self-normalising in $PGL_2(p)$. Now the double cover $SL_2(p)$ of $L_2(p)$ contains just one involution, namely its central one, and so the preimage $2.S_4$ in $SL_2(p)$ is $2 \cdot S_4^-$. Thus the group $B_p \cong p_+^{1+2} : 2 \cdot S_4^-$ exists and has centre of order p. Note that the primes dividing |G| are precisely those in the set $\{2,3\} \cup \pi$.

LEMMA 12. For all $p \in \pi$, the groups B_p are characteristic in G.

Proof. Let $\pi'' := (\pi \cup \{3\}) \setminus \{p\} = \pi' \setminus \{p\}$. The group $\mathcal{O}_{2'}(G)$ is the direct product of the subgroups $W_p := \mathcal{O}_p(B_p) \cong p_+^{1+2}$. We have

$$\mathcal{O}_{\{2,p\}'}(G) = \mathcal{O}_{p'}(\mathcal{O}_{2'}(G)) = \prod_{q \in \pi''} W_q.$$

Thus we calculate that

$$H \,:=\, \mathcal{C}_G(\mathcal{O}_{p'}(\mathcal{O}_{2'}(G))) \,=\, B_p \times \prod_{q \in \pi''} \mathcal{Z}(W_q) \,\cong\, p_+^{1+2} \colon\! 2^{\textstyle{\cdot}} \mathcal{S}_4^- \times \prod_{q \in \pi''} \mathcal{C}_q.$$

Now B_p is characteristic in H, since it is the subgroup generated by the elements of order 4. Since H is a characteristic subgroup of G we conclude that B_p is also. \square

Lemma 13. The group B_3 is also characteristic in G.

Proof. This proof is very similar to the proof of Lemma 12, and we use the notation W_q from the proof of that lemma here. The group

$$H \,:=\, \mathcal{C}_G \big(\mathcal{O}_{3'} \big(\mathcal{O}_{2'} (G) \big) \big) \,=\, B_3 \times \prod_{q \in \pi} \mathcal{Z} (W_q) \,\cong\, 3^{1+2}_+ \!:\! 4 \times \prod_{q \in \pi} \mathcal{C}_q$$

is a characteristic subgroup of G. Now B_p is characteristic in H, since it is the subgroup generated by the elements of order 4. Since H is a characteristic subgroup of G we conclude that B_p is also.

LEMMA 14. For all $p \in \pi$, we have Aut $B_p \cong p^2 : (2 \cdot S_4^- \circ C_{p-1})$. So for all such primes p we have $|\text{Aut } B_p| = \frac{1}{2} \frac{p-1}{p} |B_p|$.

Proof. We adapt the proof of Lemma 9. First note that $H = B_p \cong p_+^{1+2}: 2^*S_4^-$ embeds in $p_+^{1+2}: GL_2(p)$, in which its normaliser is $p_+^{1+2}: (2^*S_4^- \circ C_{p-1})$, and therefore its automorphism group contains $p^2: (2^*S_4^- \circ C_{p-1})$.

Note that the latter group acts transitively and faithfully on the p^2 involutions in H, so if we have any further automorphism α , we may assume α fixes one of these involutions, say z. Therefore α fixes $C_H(z) \cong p \times 2 \cdot S_4^-$, and therefore normalises the corresponding subgroup $K = O^p(C_H(z)) \cong 2 \cdot S_4^-$ of H.

Now both α and K act on the affine plane defined by the p^2 involutions (as in

Lemma 9), and both fix the same point, which we can regard as the origin. In the resulting action on the vector space of order p^2 , the image of α normalises the image of K inside $\mathrm{GL}_2(p)$ (indeed, $K:\langle\alpha\rangle$ acts on this vector space). But this action of K is faithful and $\mathrm{N}_{\mathrm{GL}_2(p)}(2^{\cdot}\mathrm{S}_4^-)\cong 2^{\cdot}\mathrm{S}_4^-\circ \mathrm{C}_{p-1}$. But we have already seen a group $p^2:(2^{\cdot}\mathrm{S}_4^-\circ \mathrm{C}_{p-1})$ of automorphisms of H acting faithfully on the affine plane, and so we may assume that α acts trivially on the affine plane. In other words, α centralises all p^2 involutions in H, so centralises the group $p_+^{1+2}:2$ which they generate.

We now know that α centralises p_+^{1+2} , and normalises a complementary $2^{\cdot}\mathrm{S}_4^-$.

We now know that α centralises p_+^{1+2} , and normalises a complementary $2 \, {}^{\circ} S_4^-$. Therefore, by Lemma 8, α is the trivial automorphism of H. This completes the proof of the lemma.

An easy calculation gives Aut $B_3 \cong 3^2$: SD₁₆. Since all of the B_p are characteristic in G, we obtain Aut $G \cong \prod_{p \in \pi \cup \{3\}} \text{Aut } B_p$. Therefore we have

$$\frac{|{\rm Aut}\, G|}{|G|}\,=\,\frac{4}{3}\times\left(\frac{1}{2}\right)^{|\pi|}\times\prod_{p\in\pi}\frac{p-1}{p}\,=\,\frac{1}{2^{|\pi|-2}}\times\frac{\phi(|G|)}{|G|},$$

and so

$$\frac{|\operatorname{Aut} G|}{\phi(|G|)} = \frac{1}{2^{|\pi|-2}}.$$

When $|\pi| = 2$ this gives $|\operatorname{Aut} G| = \phi(|G|)$. Dirichlet's Theorem tells us that π can be made arbitrarily large, thus proving Theorem 2, and also that there are infinitely many size 2 possibilities for π , thus proving Theorem 4.

REMARK. In the above construction for G we can replace the group B_3 by the cyclic group of order 3, in which case $|\operatorname{Aut} G| = 2^{1-|\pi|}\phi(|G|)$. However the proofs are slightly different. The smallest non-cyclic group G we know of that satisfies $|\operatorname{Aut} G| = \phi(|G|)$ is now the group $G \cong 3 \times 7_+^{1+2} : 2 \cdot S_4^-$ of order 49392, narrowly beating the example $2^4 : L_3(2) \times 3 \times 7$ of order 56448 that we gave in [1].

Acknowledgements. We are grateful to Chris Parker for helping us simplify some of the proofs in this paper.

References

- J. N. Bray and R. A. Wilson. On the orders of automorphism groups of finite groups. Bull. London Math. Soc., to appear.
- 2. J. J. Cannon *et al.* The Magma programming language, Version 2.10. School of Mathematics and Statistics, University of Sydney (2003).
- **3.** J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. An ATLAS of Finite Groups. *Clarendon Press, Oxford* (1985; reprinted with corrections, 2003).
- L. E. Dickson. Linear Groups, with an Exposition of the Galois Field Theory. Teubner, Leipzig (1901), reprinted Dover, New York (1958).
- E. I. Khukhro and V. D. Mazurov (Eds). Unsolved problems in group theory. The Kourovka Notebook, no. 15. Novosibirsk, 2002.
- E. Schenkman. The existence of outer automorphisms of some nilpotent groups of class 2. Proc. Amer. Math. Soc. 6 (1955), 6–11.

8 ON THE ORDERS OF AUTOMORPHISM GROUPS OF FINITE GROUPS. II

John N. Bray and Robert A. Wilson. School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham, B15 2TT. jnb@maths.bham.ac.uk R.A.Wilson@bham.ac.uk