
MAS 335 Cryptography

Notes 9: Public-key cryptography Spring 2008

Diffie–Hellman key exchange

The functions used for the RSA cipher can also be used to implement the key-exchange
protocol that we discussed at the very beginning of our discussion of public-key cryp-
tography. This system of key exchange actually predates the RSA cipher.

Assume that Alice wants to send a secret message to Bob. Alice and Bob agree
on a modulusp, a prime number. (They must share the primep, so they must assume
that Eve can get hold of it!) Each of them chooses a number coprime toλ(p) = p−1,
and computes its inverse. These numbers are not revealed. Alice choosesdA andeA,
Bob choosesdB andeB. Note that our commutation condition is satisfied:

TdATdB(x) = xdAdB mod p = TdBTdA(x).

In terms of our analogy,TeA is Alice putting on her padlock, whileTdA is Alice remov-
ing her padlock.

Now Alice takes the messagex and appliesTeA; she sendsTeA(x) to Bob. Bob
appliesTeB and returnsTeBTeA(x) to Alice. Alice appliesTdA and returns

TdATeBTeA(x) = TdATeATeB(x) = TeB(x)

to Bob, who then appliesTdB and recoversTdBTeB(x) = x, the original message.
Nobody has yet discovered a weakness in this protocol like the weakness we found

using one-time pads. In other words, even if Eve intercepts all the messagesTeA(x),
TeBTeA(x) andTeB(x) that pass to and fro between Alice and Bob, there is no known
easy algorithm for her to discoverx (even given the modulusp).

Contrast this with the standard RSA protocol: First, it allows a pair of users to
communicate securely, whereas RSA allows any two users in a pool to communicate;
secondly, three messages have to be sent, rather than just one; thirdly, what is secret
and what is public are different in this case (the prime is public but the exponent is
secret).
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The security of this protocol depends on the fact that, ify = xe (modp), then
knowledge ofx andy does not allow an easy calculation ofe. For suppose that Eve
could solve this problem. Recall that Eve knowsxeA, xeB andxeAeB (the three messages
exchanged during the protocol). If she could usexeA andxeAeB to discovereB, she
could find its inversedB modulop−1 and then calculate(xeB)dB mod p= x, the secret
message.

Thus, the security of this method depends on the fact that the following problem
is hard:

Givenx, y, and a primep such thaty≡ xe mod p, find e.

This is known as thediscrete logarithm problem, since in a sensee is the logarithm
of y to basex (where our calculations are in the integers modp, rather than in the real
numbers as usual). This problem is believed to be at least as difficult as factorisation,
although (like factorisation) it is not known to beNP-complete.

If it happens that the order ofx modp is small (so that there are only a few distinct
powers ofx modp), thenecan be found by exhaustive search. So, to make the problem
hard, the order ofx should be as large as possible. Ideally, choosex to be a primitive
root modp (an element of orderλ(p) = p−1).

Example Suppose thatp = 30491 andx = 13. Thenx2 = 169, x3 = 2197,x4 =
28561, andx5 ≡ 1 (modp). So the discrete logarithm problem is easily solved. On
the other hand, 2 is a primitive root mod 30491, so all the powers 20,21,22, . . . ,230489

are distinct, and finding which one is a particular elementy will be very laborious.
How do we check that 2 is a primitive root mod 30491, without actually working

out all these powers? We know that 230490≡ 1 (mod 30491), by Fermat’s Little
Theorem. So the order of 2 must be a divisor of 30490. We factorise 30490 into prime
factors: 30490= 2 ·5 ·3049. So anyproperdivisor would have to divide the product
of two of these primes. So we check that none of 22·5, 22·3049 and 25·3049 is congruent
to 1 mod 30491. So in this case we only have to check three powers of 2; but it is
necessary to factorisep−1.

Diffie–Hellman key establishment is a slight variation on the above protocol. In
this case, Alice and Bob agree on a primep and a primitive rootg modulo p. These
are regarded as public. Alice picks a random exponenta (for best results she should
choosea with gcd(a, p− 1) = 1), and Bob picks a random exponentb (also with
gcd(b, p− 1) = 1). Now Alice sendsga mod p to Bob, and Bob sendsgb mod p
to Alice. (Notice that it doesn’t matter who sends their message first.) Then Alice
calculates(gb)a mod p using her secret numbera and the numbergb mod p sent by
Bob. Similarly, Bob calculates(ga)b mod p. Therefore they can usek= gab = (ga)b =
(gb)a mod p as their secret key.
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El-Gamal

The El-Gamal cryptosystem is a rival to RSA and is widely used. Its security is based
on the difficulty of the discrete logarithm. It works as follows.

Bob chooses a prime numberp and a primitive rootg mod p. (Remember that
this is an element such that the powersg0,g1, . . . ,gp−2 are all distinct modulop, and
include all the non-zero congruence classes modp. We saw in Theorem 21 that prim-
itive roots exist for any primep.) He also chooses an integera∈ {1, . . . , p−2}, and
computesh = ga (modp). His public key is(p,g,h); the numbera is kept secret.

Alice wants to send a plaintextx to Bob, encoded as an integer in the range
{1, . . . , p− 1}. She chooses a random numberk, also in this range, and computes
y1 = gk (modp) andy2 = xhk (modp). The ciphertext is the pair(y1,y2).

Note that

• the ciphertext is twice as long as the plaintext;

• there arep−1 different ciphertexts for each plaintext, one for each choice of
the random numberk.

Bob receives the message(gk,xhk) mod p. He knows the numbera such thath =
ga mod p; so he can compute

hk ≡ (ga)k ≡ (gk)a mod p

without knowing Alice’s secret numberk. Now he can findx by “dividing” y2 = xhk

by hk; more precisely, he uses Euclid’s algorithm to find the inverse ofhk mod p and
multipliesy2 by this inverse to get the plaintextx.

Eve, intercepting the message, is faced with the problem of finding either

• the numbera for which h ≡ ga (modp), so that she can then use the same
decrypting method as Bob; or

• the numberk for which y1 ≡ gk (modp), so that she can findhk directly and
hence findx.

Either approach requires her to solve the Discrete Logarithm problem, and so may be
assumed to be difficult. No better way of trying to break the cipher is known.

Note that, if Eve does have the computational resources to solve a discrete log-
arithm problem, she should employ them on the first of the above problems. For if
this is solved, then she knows Bob’s private key and can read all his mail. Solving
the second only gives her Alice’s random numberk, which will be different for each
message, so the same job would have to be done many times.
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Here is a brief example. Suppose that Bob chooses the primep= 83, the primitive
root g = 2, and the numbera = 30, so thath = 230 mod 83= 40. Bob’s public key is
(83,2,40). Suppose that Alice’s plaintext isx = 54 and her random number isk = 13.
Then Alice’s ciphertext is

(gk,xhk) mod p = (58,71).

Bob computes 5830 mod 83= 9. By Euclid’s algorithm, the inverse of 9 mod 83 is
37; and so the plaintext is 37·71 mod 83= 54.

El-Gamal signatures

Using the El-Gamal scheme for digital signatures is a bit more complicated than using,
say, RSA. This is because, as we saw, the ciphertext in El-Gamal is twice as long as
the plaintext, and depends on the choice of a random numberk. So, to sign a message,
Alice cannot simply pretend that the message is a cipher and decrypt it with her private
key! Instead, she adds further data whose purpose is to authenticate the message.

Suppose that Alice’s El-Gamal public key is(p,g,h), wherep is prime andg is a
primitive root modp. Thenh≡ ga (modp), where the numbera is known only to
Alice.

To sign a messagex∈ {1, . . . , p−1}, Alice chooses a random numberk satisfying
gcd(k, p−1) = 1. Then using Euclid’s algorithm, she computes the inversel of k mod
p−1. Now she computes

z1 = gk mod p,

z2 = (x−az1)l mod p−1

The signed message is(x,z1,z2). Just as in the case of encryption, note that it is longer
than (in this case, three times as long as) the unsigned message, and it depends on a
random numberk. Alice then encrypts this message with Bob’s public key and sends
it to Bob.

On receipt, Bob decrypts the message, and finds three components. The first com-
ponent is the plaintextx. The second and third components comprise the signature.
Bob accepts the signature as valid if

hz1zz2
1 ≡ gx (modp).

We have to show that

• if Alice follows the protocol correctly, this condition will be satisfied;
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• Eve cannot forge the signature (i.e. produce(x,z1,z2) satisfying this condition)
without solving a discrete logarithm problem.

The first condition is just a case of checking;

hz1zz2
1 ≡ gaz1gkl(x−az1) (modp).

Note thatgp−1 ≡ 1 (modp), so exponents ofg can be read modulop− 1. Now
kl ≡ 1 (modp−1), sogkl(x−az1) ≡ gx−az1 (modp). Then

hz1zz2
1 ≡ gaz1gx−az1 ≡ gx (modp).

The second part is a bit more complicated and the argument will not be given here.
It is clear that Eve cannot do Alice’s computation without knowinga. We have to be
sure that there is no other way that she could produce a forgery.

Example Suppose that Alice’s public key is(107,2,15), with secret number 11, so
that 2 is a primitive root mod 107, and 211 ≡ 15 (mod 107). Suppose that Alice
wants to send the message 10 to Bob and sign it. She choosesk = 17; this number is
coprime to 106, and its inverse is 25. The signature is(z1,z2), where

z1 = 217 mod 107= 104,

z2 = (10−11·104) ·25 mod 106= 58.

So she encrypts the plaintext(10,104,58) with Bob’s public key and sends it to Bob.
(Note that the one numberx has now become six numbers in the ciphertext!)

Bob, having decrypted the message, obtains(10,104,58). He tests whether

15104·10458≡ 210 (mod 107),

and, since this is the case, he is assured that the message is from Alice.

Finding primitive roots

The El-Gamal system requires each user to choose a primep and a primitive root
g mod p. How does he find a primitive root? This is a problem which is itself not
easy. There are two approaches that have been used.

One approach is to observe that it is not crucial for the operation of the method
thatg is a primitive root; all we require is thatg should have many different powers
mod p, so that the discrete logarithm cannot be solved by exhaustive search. So all
that Bob has to do is to choose a numberg and check thatgi 6≡ 1 (modp) for all
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not-too-largei. (If he can factorisep−1, he can test whetherg is a primitive root in
only a few steps by the method of the earlier example; if it is not a primitive root, he
can find out what its order actually is by continuing this analysis.)

Another is to observe that there are some special primes for which it is easy to find
a primitive root. One way to do this is as follows.

A pair (q, p) of prime numbers is called aSophie Germain pairif p = 2q+ 1.
These are so-called because, in 1825, Sophie Germain proved a special case of Fer-
mat’s Last Theorem for exponents which are the smaller of a Sophie Germain pair.
The important thing is that it appears (though it is not proved yet) that there are lots
of such prime pairs. So it is not too inefficient to find a primeq, and then test whether
p = 2q+1 is also prime.

Now we have the following result.

Proposition 24 let (q, p) be a Sophie Germain pair. Suppose that1< x< p−2. Then
x is a primitive root mod p if and only if xq ≡−1 (modp).

For the order ofx mod p divides p−1 = 2q by Fermat’s Little Theorem, and is
not 1 or 2 (since the only elements with these orders are 1 andp−1); so the order is
q or 2q.

Suppose thatx is a primitive root (of order 2q), and lety = xq mod p. Theny2 ≡ 1
(modp), buty 6≡ 1 (modp); soxq ≡ y≡−1 (modp).

Conversely, suppose thatx is not a primitive root; thenx has orderq, soxq ≡ 1
(modp).

In our earlier example,(41,83) is a Sophie Germain pair, so to test whether 2 is
a primitive root mod 83, we only have to decide whether 241≡ −1 (mod 83). This
can be done directly, but the calculation can be simplified still further using tools from
Number Theory (the so-called Quadratic Reciprocity Law of Gauss). This is beyond
the scope of this course, but is discussed in the Number Theory course.

Sophie Germain was the first female mathematician in western Europe. She faced
many difficulties in being accepted as a serious mathematician. She communicated
by letter with many of the famous mathematicians of the time, such as Gauss and La-
grange, signing her name “Monsieur LeBlanc”. Gauss learned that his correspondent
was a woman in a curious way.

He lived in Braunschweig in eastern Germany. When Napoleon’s armies invaded
in 1806, Germain asked the military commander, who was a family friend, to take
special care of Gauss. (As a child, she had read the story of how Archimedes had been
killed by a Roman soldier during the invasion of Syracuse, and dreaded that Gauss
would suffer the same fate.) On asking to whom this special attention was due, Gauss
was surprised to learn that “Monsieur LeBlanc” was a woman.
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