
MAS 335 Cryptography

Notes 8: Public-key cryptography Spring 2008

Primes and factorisation

Primality testing is easy, but factorisation is hard. This assertion is the basis of the
security of the RSA cipher. In this section, we consider it further.

Primality testing

The basic algorithm for primality testing is trial division. In a very crude form it
asserts that, ifn > 1 andn is not divisible by any integer smaller than

√
n, thenn is

prime.
The first thing to say about this algorithm is that, with minor modification, it leads

to a factorisation ofn into primes. Ifn is not prime, then the first divisor we find will
be a primep, and we continue dividing byp while this is possible to establish the
exact power ofp. The quotient is divisible only by primes greater thanp, so we can
continue the trial divisions from the point where we left off.

The second thing is that this simple algorithm does not run in polynomial time: the
input is the string of digits ofn, and the number of trial divisions is about

√
n, roughly

2k/2 if n hask digits to the base 2.
It is a bit surprising at first that primality testing can be easier than factorisation.

This holds because there are algorithms which decide whether or not a number is prime
without actually finding a factor if it is composite! Two examples of such theorems
are:

Theorem 22 Little Fermat Theorem: If n is prime then xn ≡ x (modn) for any
integer x.

Wilson’s Theorem: n is prime if and only if(n−1)! ≡−1 (modn).

1



We have seen the proof of the little Fermat theorem. Here is Wilson’s Theorem.
Suppose that p is prime.We know that every numberx in the set{1, . . . , p−1} has

an inversey mod p (so thatxy≡ 1 (modp)). The only numbers which are equal to
their inverses are 1 andp−1: for if x is equal to its inverse, thenx2 ≡ 1 (modp), so
that p dividesx2−1 = (x−1)(x+1), andp must divide one of the factors. The other
p−3 numbers in the range can be paired with their inverses, so that the product of
each pair is congruent to 1 modp. Now multiplying all these numbers together gives

(p−1)! ≡ 1·1(p−3)/2 · (p−1)≡−1 (modp).

Conversely,suppose that p is composite. If q is a prime divisor ofp, then certainly
q divides(p−1)!, and so(p−1)! is congruent to a multiple ofq mod p, and cannot
be−1.

Can either of these results give us a quick test for primality?
As we explained in the last section, there is an efficient way to calculatexn modn,

involving at most 2 log2n multiplications of numbers not exceedingn and calculation
of the remainder modn after each multiplication. Thus, for example, 2589 ≡ 326
(mod 589), so we know that 589 is composite without finding any of its factors.

Unfortunately, this test doesn’t work in the other direction. For example, 2341≡ 2
(mod 341), even though 341= 11·31 is not prime. We say that 341 is a pseudoprime
to the base 2. In general,n is apseudoprimeto the basea if n is not prime butan ≡ a
(modn). Pseudoprimes are not very common, and if we are prepared to take the small
risk that the number we chose is a pseudoprime rather than a prime, then we could
simply accept such numbers.

We could feel safer if we checked different values. For example, although 341 is
a pseudoprime to base 2, we find that 3341≡ 168 (mod 3), so that 341 is definitely
composite.

Unfortunately even this does not give us complete confidence. ACarmichael num-
ber is defined to be a number that is a pseudoprime to every possible base but not a
prime. It seems unlikely that such numbers exist, but they do!

Proposition 23 The positive integer n is a Carmichael number if and only if it is
composite andλ(n) divides n−1.

For a Carmichael number can have no repeated prime divisors: ifp2 dividesn then
pn modn is a multiple ofp2 and so not equal top. Now for such numbers we know
thatxm≡ x (modn) if and only if λ(n) dividesm−1.

Now considern = 561= 3 ·11·17. We haveλ(n) = lcm(2,10,16) = 80 and 80
divides 560, so 561 is a Carmichael number.

Refinements of this test due to Solovay and Strassen and to Rabin gave fast algo-
rithms which could conclude either thatn is certainly composite or thatn is ‘probably
prime’, where our degree of confidence could be made as close to 1 as required.

2



The Miller–Rabin primality test This is a probabilistic algorithm based on the
same idea as we saw in the last chapter, for factorisingN = pq when an encryption–
decryption pair(e,d) for RSA moduloN is known. We assume that the previous tests
have not shownn is composite, so we might as well assume thatxn−1 ≡ 1 modn for
all x we ever come across. Now writen−1= 2a.b, whereb is odd, and pick a random
numberx. Calculatey≡ xb modn, so thaty2a ≡ 1 modn. As before we letz be the
last term not equal to 1 in the sequencey, y2, y4, y8, . . . , modn. If z≡ −1 modn,
then the test has failed to proven is composite, and therefore increases the likelihood
that n is actually prime. Applying the test again with another value ofx increases
the likelihood again. Indeed, ifn is composite, the probability of the test failing is
less than 1/2 for each value ofx. Therefore, if we apply the test 20 times with 20
independent random values ofx, and each time it fails to prove thatn is composite,
then we conclude thatn is very likely to be prime (with a probability of error of less
than one in a million).

Wilson’s theorem doesn’t have the drawback of Fermat’s Little Theorem: it is a
necessary and sufficient condition for primality. That is, if(n−1)! ≡ −1 (modn),
thenn is prime; if not, not. Unfortunately, unlike the situation of calculating powers of
integers, nobody has ever discovered a quick method of calculating factorials modn
for givenn. (The natural method would requiren−1 multiplications.)

The method finally used by Agrawal, Kayal and Saxena was a kind of combination
of these two approaches, together with some ingenuity. They begin with the remark
thatn is prime if and only if

(x−1)n ≡ xn−1 (modn)

aspolynomials, rather than integers. This is because the coefficients in(x−1)n are
binomial coefficients

(n
i

)
; if n is prime, then

(n
i

)
is a multiple ofn for i = 1, . . . ,n−1,

but if n has a prime factorq then
(n

q

)
is not a multiple ofn.

This is no good as it stands; we can raisex−1 to thenth power with only 2 log2n
multiplications, but the polynomials we have to deal with along the way have as many
asn terms, too many to write down. So the trick is to work mod(n,xd−1) for some
carefully chosen numberd. I refer to their paper for the details.

Factorisation

There is not a lot to say about factorisation: it is a hard problem! There are some
special tricks which have been used to factorise huge numbers of some special forms,
such asFermat numbers22n

+ 1 andMersenne numbers2p− 1 (for p prime). Of
course, we would avoid such special numbers when designing a cryptosystem.

3



However, one should not overestimate the difficulty of factorisation. Numbers
with well over 100 digits can be factorised with today’s technology. The gap between
primality testing and factorisation is sufficiently narrow that it is necessary to keep
updating an RSA system to use larger primes.

Later we may touch on quantum computing and see why the advent of this tech-
nology (if and when it comes) will allow efficient factorisation of large numbers and
make the RSA system insecure.

We discuss briefly just one factorisation technique:Pollard’s p−1 method. This
method works well if the numberN we are trying to factorise has a prime factorp
such thatp−1 has only small prime power divisors. Suppose that we can choose a
numberb such that every prime power divisorq of p−1 satisfiesq≤ b.

The algorithm works as follows. Choose any numbera > 1, and by successive
powering computex= ab! modN. By assumption, every prime power divisor ofp−1
is at mostb, and hence dividesb!. Hencep−1 dividesb!. Thus,ab! ≡ 1 (modp) by
Fermat’s Little Theorem, so thatp dividesx−1. By assumption,p dividesN. Hence
gcd(x−1,N) is a multiple ofp, and so is a non-trivial divisor ofN. (Indeed, in the
RSA case, ifN is the product of two primes, then gcd(x−1,N) will be a prime factor
of N.)

Here is an example. LetN = 6824347 andb = 10. Choosinga = 2, we find that
x = 5775612 and gcd(x−1,N) = 2521. Thus, 2521 is a factor ofN, and with a bit
more work we find that it is prime and thatN = 2521·2707 is the prime factorisation
of N.

The method succeeds because

2521−1 = 23 ·32 ·5·7

and all the prime power divisors are smaller than 10. Of course, if this condition were
not satisfied, the method would probably fail. If we replace 2521 by 2531 in the above
example, we find thatN = 2531·2707= 6851417,x = 210! modN = 6414464, and
gcd(x−1,N) = 1.

Because we have to calculateab! modN by successively replacinga by ai modN
for i = 1, . . . ,b, we have to performb−1 exponentiations modN. So the method will
not be polynomial-time unlessb≤ (logN)k for somek. So we are only guaranteed
success in polynomial time if the prime-power factors ofp−1 for at least one of the
divisors ofN are at most(logN)k – this is small compared to the magnitudes of the
primes involved, which may be roughly

√
N.

Thus, in choosing the primesp andq for an RSA key, we should if possible avoid
primes for whichp−1 or q−1 have only small prime power divisors; these are the
most vulnerable.

4


