
MAS 335 Cryptography

Notes 6: Public-key cryptography Spring 2008

Key distribution

We have seen that it is possible to construct an ‘unbreakable’ cipher using randomness:
this is the one-time pad, whose key is a string of characters as long as the message.

One weakness of all the ciphers we have studied so far is the problem ofkey dis-
tribution. If Eve can get hold of the key, then she can decrypt the cipher. On the other
hand, Alice and Bob must both know the key, or they cannot communicate. So they
must share the key by some secure method which Eve cannot penetrate.

In the classical field of espionage, a spy is given the key (which might be one
copy of the one-time pad, the other copy being held by the home agency) before
being sent out into the field. Since the key must not be re-used, the spy can only
send as much information as the key he possesses. Then he must return to base for
a new one-time pad. This system can work well, if the spy keeps the pad on his
person and destroys each page when it is used. One of the stories told by Peter Wright
in Spycatcherrelates how MI6 agents found a one-time pad in the possessions of a
suspected spy; they copied the pad and returned it, and were subsequently able to
read the communications. Of course, having a one-time pad on your person might be
extremely dangerous!

Other ciphers use a key which is smaller than the message. For example, a mili-
tary commander might be issued with a set of keys, and instructed to use a new key
every month according to some schedule. But if the enemy captures the keys, then all
communications can be read until the whole set of keys is changed; this change may
be difficult in wartime.

The commercial use of cryptography since the second world war introduced new
problems. Commercial organisations need to exchange secure communications; the
only way of exchanging keys seemed to be by using trusted couriers. The amount
of courier traffic began to grow out of control. It was the invention of public-key
cryptography which gave us a way round the key distribution problem.

1



That there is a possible way around the problem is suggested by the following
fable. Alice and Bob wish to communicate by post, but they know that Eve’s agents
have control of the postal service, and any letter they send will be opened and read
unless it is securely fastened. Alice can put a letter in a chest, padlock the chest, and
send it to Bob; but Bob will be unable to open the chest unless he already has a copy
of Alice’s key!

The solution is as follows. Alice puts her letter in the chest, padlocks it and sends
it to Bob. Now Bob cannot open the chest. Instead, he puts his own padlock on the
chest and sends it back to Alice. Now Alice removes her padlock and returns the chest
to Bob, who then simply has to remove his own padlock and open the chest.

A little more formally, let Alice’s encryption and decryption functions beeA and
dA, and let Bob’s beeB anddB. This means that Alice encrypts the plaintextp as
eA(p); she can also decrypt this top, which means thatdA(eA(p) = p.

Now Alice wants to send the plaintextp to Bob by the above scheme. She first
encrypts it aseA(p) and sends it to Bob. He encrypts it aseB(eA(p)) and returns it to
Alice. Now we have to make a crucial assumption:

eA andeB commute, that is,eA◦eB = eB◦eA.

Now Alice has(eB◦eA)(p), which is equal toeA◦eB(p) = eA(eB(p)) according to our
assumption. Alice can now decrypt this to givedA(eA(eB(p))) = eB(p) and send this
to Bob, who then calculatesdB(eB(p)) = p. At no time during the transaction is any
unencrypted message transmitted or any key exchanged.

Note that the operations of putting two padlocks onto a chest do indeed commute!
The method would not work if, instead, Bob put the chest inside another chest and
locked the outer chest; the operations don’t commute in this case.

If the letter that Alice sends to Bob is the key to a cipher (say a one-time pad),
then Alice and Bob can now use this cipher in the usual way to communicate safely,
without the need for the to-and-fro originally required. The system only depends on
the security of the ciphers used by Alice and Bob for the exchange, and the fact that
they commute.

Now if Alice and Bob use binary one-time pads for the key exchange, then these
conditions are satisfied, since binary addition is a commutative operation.

However, further thought shows that this is not a solution at all! Suppose that Alice
wants to send the stringl securely to Bob (perhaps for later use as a one-time pad).
She encrypts it asl ⊕ kA, wherekA is a random key chosen by Alice and known to
nobody else. Bob re-encrypts this as(l ⊕kA)⊕kB, wherekB is a random key chosen
by Bob and known to nobody else. Now(l ⊕kA)⊕kB = (l ⊕kB)⊕kA, so when Alice
re-encrypts this message withkA she obtains

((l ⊕kB)⊕kA)⊕kA = (l ⊕kB)⊕ (kA⊕kA) = l ⊕kB,

2



and when Bob finally re-encrypts this withkB he obtains

(l ⊕kB)⊕kB = l .

This is the exact analogue of the chest with two keys.
If Eve only intercepts one of these three transmissions, it is impossible for her to

read the message, since each is securely encrypted with a one-time pad. However, we
must assume that Eve will intercept all three transmissions. Now if she simply adds
all three together mod 2, she obtains

(l ⊕kA)⊕ (l ⊕kA⊕kB)⊕ (l ⊕kB) = l ,

and she has the message!

Complexity

In trying to wrestle with this problem, Diffie and Hellman came up with an even more
radical solution to the problem of key sharing: it is not necessary to share the keys
at all! The reason for the insecurity of the above protocol is that decryption is just as
simple as encryption for someone who possesses the key; indeed, for binary addition,
it is exactly the same operation. (A cipher with this property is calledsymmetric.) The
trick is to construct an asymmetric cipher, where decryption is ruinously difficult even
if you are in possession of the key.

In order to understand this, we must look at what is meant when we say that a
problem iseasyor difficult. This is the subject-matter ofcomplexity theory. What
follows is a brief introduction to complexity theory. You can find much more detail
either in the lecture notes at
http://www.maths.qmul.ac.uk/%7Epjc/notes/compl.pdf ,
or in books such as M. R. Garey and D. S. Johnson,Computers and Intractability: A
Guide to the Theory of NP-Completeness.

The subject of computational complexity grew out of computability theory, orig-
inally due to Alan Turing (who was also one of the most successful cryptanalysts of
the twentieth century). Turing succeeded in showing that there are some mathematical
problems which cannot be solved by a machine carrying out an algorithm.

In order to demonstrate this, Turing had to analyse the process of computation.
He proposed a model, called aTuring machine, and showed that it can carry out any
process which can be described algorithmically. Said otherwise, a Turing machine can
‘emulate’ any computer, real or imagined, that has ever been proposed. Seventy years
later, despite the efforts of physicists and philosophers, Turing’s claim still stands.

A Turing machine consists of two parts: atapeand ahead.

3



• The tape is made up of cells stretching infinitely far in both directions. Like the
RAM or the hard disc of a computer, it stores information; each cell can either
be blank or have a symbol from an alphabetA written on it. The one difference
between a Turing machine and a real computer is that the tape is infinite; but
we assume that only finitely many tape squares are not blank. So we could
regard the memory as finite but unbounded; if more memory is needed for a
computation, it is always available.

• The head is a machine which can be in any one of a finite number of states; it
resembles the CPU of a computer. The head also has access to one square of the
tape.

The configuration of the machine is given by describing

• the string of symbols written on the non-blank squares of the tape;

• the state of the head, and its position (the square which it is scanning).

Now the machine operates as follows. It has a program, a finite set of rules determining
what it does at any moment. The action is determined by the state of the head and the
symbol on the square which it is scanning. The program can direct the head to change
into a specified state, and either to change (or erase) the symbol on the tape square, or
to move one place to the left or the right.

One (or more) of the states is distinguished as a ‘halting state’. In order to perform
a computation, we place a finite amount of information on the tape and put the head
in a particular state scanning a particular square. Then the machine starts operating; if
it reaches a halting state, its output is the information written on the tape.

Now we can say that a function is computable if there is a Turing machine which
computes it. For example, if the tape alphabet is the set of digits{0,1, . . . ,9}, we could
design a machine so that, if the numberN is written (in the usual way in base 10) on
the tape and the machine is started immediately to the right of the string, it calculates
N2, writes the answer on the tape, and halts. All that such a machine needs is an ap-
propriate program (which might, for example, include the usual multiplication table),
and it can square a number of any size.

Clearly this is a very basic kind of machine. But adding facilities such as in-
creasing the number of states, or giving it extra tapes (even changing the tape into a
two-dimensional array), or allowing the machine to access any tape square within a
fixed distance of the head, we do not change the class of computable functions. Tur-
ing showed that there exist mathematical functions which are not computable in this
sense.

Now complexity changes the question “Can this function be computed?” to the
question “How long will it take to compute it?” Variations are possible, such as “How

4



much memory will I need for the computation?” Clearly the precise answers will
depend on the precise details of the Turing machine, so we ask the question in a fairly
broad-brush way.

First let us be clear that we are not interested in one-off questions of a general kind
such as “Is Goldbach’s Conjecture true?” Aproblemin this context means a whole
class ofproblem instances. We specify a problem by saying what data comprises the
problem instance, and what answer we require (which might be just ‘Yes’ or ‘No’, or
might be some data such as the square ofN).

We measure thesizeof a problem instance by the number of tape squares needed
to write down the input data. It makes little difference if we decide to use only the
binary alphabet, and define the size of a problem instance to be the number of bits of
input data. (For example, if we write the numberN in base 2 instead of base 10, we
need only log2(10) = 2.30. . . times as many tape squares; a constant factor does not
matter here.

Now we organise problems intocomplexity classesas in the following examples:

• A problem lies inP, or ispolynomial-time solvable, if there is a Turing machine
which can solve an instance of the problem of sizen in at mostp(n) for some
polynomialp.

• A problem lies inNP, or isnon-deterministic polynomial-time solvable, if there
is a Turing machine which can check the correctness of a proposed solution of
a problem instance of sizen in at mostp(n) steps, for some polynomialp.

• A problem lies inPSpace, or is polynomial-space solvable, if there is a Turing
machine which can solve an instance of the problem of sizen using at mostp(n)
tape squares, for some polynomialp.

• A problem lies inExpTime, or isexponential-time solvable, if there is a Turing
machine which can solve an instance of the problem in at most 2p(n) steps, for
some polynomialp.

Clearly a problem of higher complexity is harder, and this is a very practical thing
to know. If a problem takesn3 steps to solve, and each step takes a nanosecond, then
an instance of size 1000 can be solved in a second, and an instance of size 10000 in
three months. However, if it takes 2n steps, then we can solve an instance of size 30 in
a second, while an instance of size 100 will take longer than the age of the universe!
The general paradigm is that polynomial-time problems are easy, while exponential-
time problems are hard. (Of course much depends on the degree and coefficients of
the polynomial; but this works well as a rule of thumb.)

Now we have:

5



Theorem 12 P⊆ NP⊆ PSpace⊆ ExpTime.

As this is not a course on complexity, we will not prove this in detail; but a few
comments on the proof might help explain the concepts. The first inclusion holds
because checking a proposed solution is easier than finding a solution.

The second inclusion holds because, if we can check any proposed solution in
polynomial time, the check only use a polynomial number of tape squares. So we
simply work through all possible solutions until we find one that works.

The last inclusion follows because, if the alphabet has sizeq, then p(n) tape
squares can only hold at mostqp(n) possible strings. If the computation took more
than this number of steps, we would have to revisit a previous configuration then the
machine would be in an infinite loop, and would not finish at all.

One thing remains to be stressed. It is (relatively) easy to show that a problem
lies in a particular complexity class. Strictly, we have to show that there is a Turing
machine which solves it efficiently. In practice, it is enough to find some algorithm
which solves the question efficiently. Then translating that algorithm into a Turing
machine may increase the number of steps, but not enough to affect our broad-brush
conclusions.

However, it is very difficult to show that a problem isnot in a particular complexity
class, since we would have to show that no possible Turing machine, or no possible
algorithm, can solve the problem efficiently enough. There are many instances of
problems where the naive algorithm has been superseded by a much more efficient
algorithm.

Thus, it is known thatP is properly contained inExpTime, and so at least one of
the inclusions in Theorem 12 must be proper. It is conjectured that they are all proper.
For example, there are problems inNP (the so-calledNP-complete problems) which
have been studied for a long time, and nobody has ever managed to find an algorithm
to solve any of them in polynomial time.

Our rough equivalences will be:

‘easy’ = P,

‘hard’ = NP-complete.

The NP-complete problems are the ‘hardest’ problems inNP. If a polynomial-time
algorithm were ever found for one of them, then we would conclude thatP = NP. It is
conjectured that this is not the case. (The Clay Mathematical Institute has offered one
million dollars for a proof or disproof of this, as one of its seven millennial problems.)

6



Public-key cryptography: basics

The idea of public-key cryptography based on the fact that there are easy and hard
problems was devised by Diffie and Hellman in the 1970s. This is one of the great
ideas of the twentieth century!

In order to explain how a cipher can be secure when the key is publicly available,
we now formulate the general setup of cryptography a bit more carefully.

Let P be the set of plaintext messages that users of the system might wish to send.
(Thus,P might be the set of all strings of letters and punctuation marks, or strings of
zeros and ones, or certain strings of dots and dashes.) LetK be the set of keys, andZ
the set of ciphertexts. Then there is anencryption function

e : P ×K → Z

and adecryption function
d : Z×K → P

which must satisfy the relationship

(PK1) d(e(p,k),k) = p.

This simply says that encryption followed by decryption using the same key must
recover the original plaintext.

Now the first requirement of public-key cryptography is:

(PK2) Evaluatingeshould be easy.

(PK3) Evaluatingd should be difficult.

(Here, ideally, we should use the equations of the preceding section, that is, ‘easy’
means ‘polynomial-time’, while ‘hard’ means ‘NP-complete’. In practice, it almost
always means something less precise than this.)

This means that we may assume that Eve not only knows the ciphertextz that Alice
sent to Bob, but she also knows the keyk and the functionseandd used for encoding
and decoding; so all she has to do is to evaluated(z,k). However, this is a hard
problem, and we can assume that, even with the most advanced current technology,
it will take her (say) a hundred years to evaluate this function. By that time, the
protagonists are all dead and the information has no value.

However, there is a problem here. If decryption is hard, how does Bob (the legiti-
mate recipient) manage to do it? The answer is that there is yet another layer. There
is a setS of secret keys, together with an inverse pair of functions

g : S →K , h : K → S .

7



(Think of the mnemonics ‘go public’ and ‘hide’.) Now we make the following re-
quirements:

(PK4) Evaluating the composite functiond∗(z,s) = d(z,g(s)) is easy.

(PK5) Evaluatingg is easy

(PK6) Evaluatingh is hard.

Assumption (PK4) means that, givensandz, it is easy to computep such thatd(z,k) =
p (or equivalentlye(p,k) = z) for the uniquek which satisfiesh(k) = s(or equivalently
g(s) = k). Note that this does not mean that it is easy to computeg(s) = k and then
d(z,k) = p, since the latter computation is assumed to be hard; there should be an easy
way to compute the composite functiond∗.

Now let us see how the system works. Alice wants to send a message to Bob which
is secure from the eavesdropper Eve. Bob chooses a ‘secret key’ from the setS and
tells nobody of his choice. He computes the corresponding ‘public key’k = g(s) ∈K
and makes this available to Alice. Bob is aware that Eve will also have access to his
public keyk. We observe that this computation is assumed to be easy.

Alice wants to send Bob the plaintext messagep. Knowing his public keyk, she
computes the ciphertexte(p,k) and sends this to Bob. (This computation is also easy.)

Bob is now faced with the problem of decrypting the message. But Bob already
knows the secret keys, and so he only has to do the easy computation ofp = d∗(z,s).
Sinceg(s) = k, we havep = d(z,k), so thatp is indeed the correct plaintext that Alice
wanted to send.

What about Eve? Her position is different, since she doesn’t know the secret key.
Either she has to computed(z,k) directly (which is hard), or she could decide to
compute Bob’s secret keys by evaluating the functions= h(k) (which is also hard).

Note that Eve knows in principle how to evaluate either of these functions; the
only thing keeping the cipher secure is the complexity of the computations. The im-
portant thing is that the secret key, which enables Bob to decrypt the message, is never
communicated to anyone else; Bob chooses it, and uses it only to decrypt messages
sent to him.

Now in principle we have a method for any set of people to communicate securely.
Suppose we have a number of usersA,B,C, . . .. Each user chooses his or her own
secret key: thus, Alice choosessA, Bob choosessB, and so on. These choices are
never communicated to anyone else. Now Alice computeskA = g(sA) and publishes
it; and similarly Bob computeskB = g(sB) and so on. Then anyone who wishes to send
a messagep to Alice first obtains her public keykA (which may be in a directory or
on her Web page), and then encrypts it asz= e(p,kA) and transmits this to Alice. She

8



can calculatep = d∗(z,sA) = d(z,kA); but nobody else can read the message without
performing a hard calculation.

Some terminology that is often used here is that of ‘one-way functions’. A func-
tion f : A→ B is said to beone-wayif it is easy to computef but hard to compute the
inverse function fromB to A. It is atrapdoor one-way functionif there is a piece of in-
formation which makes the computation of the inverse function easy. Thus, for public-
key cryptography, we want encryption to be a trapdoor one-way function, where the
key to the trapdoor is the secret key; the function from secret key to public key should
be a one-way function.

Digital signatures

There is a serious potential weakness of public-key cryptography. Eve cannot read
Alice’s message to Bob. But, since Bob’s key is public, Eve can write her own message
to Bob purporting to come from Alice, encrypt it with Bob’s key, and substitute it for
Alice’s authentic message on the communication channel. Is there a way around this?

Indeed there is. We make two further assumptions, namely:

(PK7) The setP of plaintext messages is the same as the setZ of ciphertexts.

(PK8) e(d(z,k),k) = z for anyz∈ Z andk∈K .

The first assumption is not at all restrictive. Almost always, in practice, both sets will
consist of all binary strings. The second assumption strictly follows from the others.
Condition (PK1) says that decryption is the inverse of encryption; that is, the functions
p 7→ e(p,k) andz 7→ d(z,k) are inverse bijections (the second undoes the effect of the
first). Now inverse functions on finite sets work ‘both ways round’, so the first undoes
the effect of the second; this is exactly what (PK8) claims. The reason that we make
this assumption is that in practice the functions may not quite be bijections, or the sets
of potential plaintexts may be infinite.

Alice wants to send the plaintextp to Bob, in such a way that it cannot be faked by
Eve. First, bizarrely, she pretends thatp is a ciphertext anddecrypts it using her own
secret key! In other words, she computesu = d(p,kA). The result, of course, appears
to be gibberish.

Now she writes a preamble in plaintext saying “This is a signed message from Al-
ice”, and now encrypts the whole thing using Bob’s public key; that is, she calculates
z= e(u,kB) = e(d(p,kA),kB). She sends this message to Bob.

Now Bob decrypts this message using his own secret key, obtainingd(z,kB) =
u. He sees the statement “This is a signed message from Alice”, followed by some
gibberish. Now he does another strange thing: heencryptsthe gibberish, using Alice’s

9



public key (as if it were a message he wanted to send to Alice). This givese(u,kA),
which is equal top by our assumption (PK8) (sinced(p,kA) = u). Then Bob has the
intended message.

Assumption (PK8) further tells us that the equatione(u,kA) = p is equivalent to
d(p,kA) = u. Thus, the only person who could compute this is the holder of Alice’s
secret key, namely Alice herself; so Bob is assured that the message is from Alice.
(For Eve to fake such a message, she is faced with the same problem as in decrypting
a message from Alice, that is, either computed(p,kA), or computeh(kA); both are
hard problems.)

10


