
MAS 335 Cryptography

Notes 4: Stream ciphers, continued Spring 2008

Recall from the last part the definition of a stream cipher:

Definition: A stream cipherover an alphabet ofq symbolsa1, . . . ,aq requires akey,
a random or pseudo-random string of symbols from the alphabet with the same length
as the plaintext, and asubstitution table, a Latin square of orderq (whose entries
are symbols from the alphabet, and whose rows and columns are indexed by these
symbols). If the plaintext isp = p1p2 . . . pn and the key isk = k1k2 . . .kn, then the
ciphertext isz = z1z2 . . .zn, wherezt = pt ⊕ kt for t = 1, . . . ,n; the operation⊕ is
defined as follows:

ai⊕a j = ak if and only if the symbol in the row labelledai and the column
labelleda j of the substitution table isak.

We extend the definition of⊕ to denote this coordinate-wise operation on strings:
thus, we writez= p⊕k, wherep,k,z are the plaintext, key, and ciphertext strings.

We also define the operation	 by the rule thatp = z	 k if z = p⊕ k; thus,	
describes the operation of decryption.

Fish

A simple improvement of the Vigenère cipher is to encipher twice using two differ-
ent keysk1 andk2. Because of the additive nature of the cipher, this is the same as
enciphering withk1 +k2. The advantage is that the length of the new key is the least
common multiple of the lengths ofk1 andk2. For example, if we encrypt a message
once with the keyFOXESand again with the keyWOLVES, the new key is obtained
by encrypting a six-fold repeat ofFOXESwith a five-fold repeat ofWOLVES, namely

BCIZWXKLPNJGTSDASPAGQJBWOTZSIK

1



The new key has period 30. Re-encrypting with a word of length 7 would have the
effect that the new key has period 210.

This idea was exploited in the Second World War German cipher codenamed
“Fish”, so-called because it used the Siemens T52 machine known asSägefisch(saw-
fish). This cipher, which was broken by the Bletchley Park cryptanalysts, is less well-
known than the Enigma cipher, but is probably of even greater significance, since it
was used for strategic messages, troop dispositions, etc., between the German High
Command and the theatres of war. The bookCode Breakers: The Inside Story of
Bletchley Park(edited by F. H. Hinsley and Alan Stripp) gives more detail about break-
ing this cipher, which has been described as the greatest intellectual achievement of
the war.

The Fish cipher employed the 5-bit International Telegraph Code, described in
Part 3 of the notes. The five bits of each character in the plaintext were separated
into five bitstreams which were enciphered separately and then reassembled into a
sequence of 5-bit words for transmission.

The encryption of each substream was by means of a stream cipher, generated
by a mechanical device. The first stage consisted of one Vigenère cipher for each
substream; the periods of these ciphers were 41, 31, 29, 26 and 23. Each cipher was
implemented by a toothed wheel; the teeth could be extended or retracted, correspond-
ing to a 1 or a 0 in the corresponding keyword. The wheels advanced one place after
encrypting one bit from each stream in parallel. This was followed by a second ci-
pher, like a Vigeǹere cipher but where we sometimes advance to the next letter of the
keyword and sometimes remain with the same one, depending on the operation of two
further wheels. The periods of the second ciphers were 43, 47, 51, 53 and 59, while
the control wheels had periods 37 and 61. (The precise method of operation, and a
diagram of the machine, appear in the bookCode Breakers.)

Since the wheel sizes are pairwise coprime, the period of the keystring generated
by such a cipher is their product:

23· · ·61= 16033955073056318658.

The keys of the different Vigeǹere ciphers and the control wheels could be set, but the
lengths of the wheels was fixed.

It would have been possible for the Bletchley Park cryptanalysts to have assem-
bled models of the cipher machines. But they felt that the supply of parts for such
machines would have drawn attention to the fact that they were attempting to break the
cipher. So instead they built electronic machines (including Colossus, the first stored-
program computer) out of readily available parts used for telephone switchgear. This
move from mechanical to electronic methods in cryptography was probably the most
significant result of the Bletchley Park codebreakers.
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Shift registers

Ideally the key string for a stream cipher should be as unpredictable as possible; but
for practical purposes we need a simple way to generate it. One method which has
been widely used for generating “pseudo-random” binary sequences involves shift
registers.

Figure 1 shows a shift register.
Each of the boxes in the shift register contains one bit (zero or one). The shift

register is controlled by a clock which ticks at discrete time intervals. When the clock
ticks, the contentsx0 andx1 of the first two boxes are added (mod 2); then the contents
of each box is shifted one place left (that of the first box is output) and the result of
the addition is put in the last box.
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Figure 1: A shift register

Suppose that the boxes initially contain 0001. Then, at successive clock ticks, they
become 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110,
1100, 1000, 0001, and the machine outputs the sequence

000100110101111

At this point, the contents have returned to their original values, and the machine then
repeats the same cycle indefinitely.

We see that, for this particular shift register, every possible binary 4-tuple except
0000 occurs precisely once in a cycle as the contents of the boxes. Moreover, the
contents of the boxes at stagen become the next four bits of the output string. So, if
we consider the string as continuing indefinitely, and if we look at it through a window
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which shows just four bits at a time, then we see each of the 24−1 = 15 non-zero 4-
tuples just once in each cycle. Note that we could start with any non-zero 4-tuple and
the same cycle would be obtained.

On the other hand, if we start with 0 in each box, then the contents of the boxes
will always be 0, and the output string consists entirely of zeros – not very good as a
pseudo-random string.

In general, a shift register works in the same way. It is specified by giving

(a) the number of boxes;

(b) which boxes are connected to the “adder”.

If there aren boxes, we speak of ann-bit shift register. Its configuration at any given
time is the binaryn-tuple giving the contents of the boxes at that time.

For reasons that will become clear in the next section, it is convenient to describe
a shift register by a polynomial over the binary field. The degreen of the polynomial
is the number of boxes; the coefficient ofxi is 1 if i = n or if the ith box is connected
to the adder, and 0 otherwise. (We number the boxes from 0 on the left ton−1 on the
right.) Thus, the polynomial describing the shift register in Figure 1 is

x4 +x+1.

Proposition 5 Suppose that a shift register is described by the polynomial

xn +
n−1

∑
i=0

aix
i .

Then its output sequence is given by the recurrence relation

xk+n =
n−1

∑
i=0

aixk+i .

Proof: Suppose that the configuration is(u0, . . . ,un−1). At the next clock tick, the
adder computest = ∑n−1

i=0 aiui . The nextn bits output are, in order,xk = u0, xk+1 = u1,
. . . ,xk+n−1 = un−1, xk+n = t. Hence the sequence is given by the recurrence relation.

An n-bit shift register (one withn boxesx0, . . . ,xn−1) which starts in a non-zero
configuration must return to its starting point in at most 2n−1 steps, since there are
exactly this many non-zero configurations it can have. Thus, its period is at most
2n−1. An n-bit shift register is said to beprimitive if is period is 2n−1; that is, if it
has the property that, if the starting configuration is non-zero, then each of the 2n−1
non-zeron-tuples occurs once as a configuration in the course of a cycle. The next
theorem asserts that primitive shift registers exist with any given number of bits.
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Theorem 6 For any positive integer n, there is a primitive n-bit shift register.

Of course, it is easy to construct a shift register with a moderate number of bits,
say 30 or 100. We can ensure (by choosing a primitive shift register) that its output
sequence will not repeat during the lifetime of the universe!

Algebraic formulation

The behaviour of the shift register can be described algebraically. Ifx= (x0,x1,x2,x3)
are the contents of the shift register at any moment, andy= (y0,y1,y2,y3) the contents
after the clock ticks, then we have

y0 = x1

y1 = x2

y2 = x3

y3 = x0 + x1

or, in matrix terms,y′ = Ax′, whereA is the matrix
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 .

(Herex′ is the transpose ofx, the column vector corresponding to the row vectorx.)
The matrixA satisfiesA15 = I , and no smaller power ofA is equal toI . If V

denotes the 4-dimensional vector space over the binary field, then for any non-zero
vectorx∈V, the fifteen vectors

x′,Ax′,A2x′, . . . ,A14x′

are distinct and comprise all the non-zero vectors inV.
The connection between the polynomial and the matrix is simple:

The polynomial of a shift register is equal to the characteristic polynomial
(and to the minimal polynomial) of its matrix.

For, given a polynomialf (x) = xn + an−1xn−1 + · · ·+ a1x+ a0, the companion
matrix of f is defined to be the matrix

C( f ) =


0 1 0 . . . 0 0
0 0 1 0 . . . 0
... ... ... ... ... ...
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1


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with zeros everywhere except for ones above the diagonal and the coefficients off in
reverse order with the sign changed in the bottom row. It is a standard result that the
characteristic and minimal polynomials ofC( f ) are both equal tof . Now over the
binary field,−a is the same asa, and the matrix associated with the shift register is
preciselyC( f ), so has the same characteristic and minimal polynomials.

We call a polynomial of degreen primitive if its associated shift register is primi-
tive. Now the following theorem holds:

Theorem 7 A primitive polynomial is irreducible.

The proof of this theorem depends on the theory of finite fields and is beyond the
scope of the course.

Example: Suppose thatn = 4. How do we find all the primitive polynomials? First
we find the irreducible polynomials. Let

f (x) = x4 +ax3 +bx2 +cx+d

be a polynomial overZ/(2), so that all the coefficients are 0 or 1. There are 24 = 16
polynomials altogether. Now, by the remainder theorem, iff (0) = 0, that is,d = 0,
thenx is a factor off (x); and if f (1) = 0, that is, 1+a+b+c+d = 0, thenx−1 is a
factor (note thatx−1 is the same asx+1). So we must haved = 1 anda+b+c = 1.
Of the sixteen polynomials, just four pass these tests, namely

x4 +x+1, x4 +x2 +1, x4 +x3 +1, x4 +x3 +x2 +x+1.

Now there is an irreducible polynomial of degree 2, namelyx2 +x+1, and

(x2 +x+1)2 = x4 +x2 +1

is reducible. This leaves three polynomials. All of them are irreducible, since we have
exhausted all the possible factorisations.

Now x4 +x+1 is primitive; this is the polynomial of the shift register with which
we started. Similarly it can be checked thatx4 + x3 + 1 is primitive. However, if
we take the polynomialx4 + x3 + x2 + x+ 1 (with corresponding recurrence relation
xi+4 = xi+3+xi+2+xi+1+xi), the starting configuration 0001 generates the sequence

000110001100011. . .

of period 5. The other starting configurations also produce output of period 5. This
polynomial is not primitive.

Using the theory of finite fields (which we sketch in the Appendix) it is possible
to give formulae for the number of irreducible and primitive polynomials of degreen
overZ/(2):
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Theorem 8 (a) The number of irreducible polynomials of degree n overZ/(2) is
equal to

1
n∑

d|n
2dµ(n/d),

where µ is the M̈obius function.

(b) The number of primitive polynomials of degree n overZ/(2) is equal to
φ(2n−1)/n, whereφ is Euler’s function.

Euler’s function was defined in Part 2 of the notes. TheMöbius function µis
defined by

µ(n) =
{

(−1)k if n is the product ofk distinct primes;
0 otherwise.

For example, whenn = 4, the number of irreducible polynomials is

1
4
(24−22) = 3,

while the number of primitive polynomials isφ(15)/4 = 2, in accordance with what
we found above.

Golomb’s Postulates

How do we tell if a sequence is random?
This is a very deep question, and several different solutions have been proposed.

By definition, ‘random’ means ‘selected from the set of all possible sequences, any
sequence being equally likely’, or (what amounts to the same thing, ‘the symbols
in the string are chosen independently with equal probability’. But this definition
refers to the set of all possible sequences, and doesn’t tell us anything about a single
sequence. Indeed, any sequence can occur, even a constant sequence!

A completely different definition was proposed by Kolmogorov, who said:

A sequence is random if it cannot be generated by an algorithm with a
short description (i.e. much shorter than the sequence itself).

Using this definition, the keystring of the Fish cipher, or the string of digits ofπ, is not
random. However, the definition is not easy to apply.

A more practical test was given by Golomb, who proposed three postulates. To
state Golomb’s postulates, we need a couple of definitions. Suppose thata= a0a1 . . .an−1

is a binary sequence. We regard it as cyclic, so thata0 is regarded as followingan−1.
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A run in the sequence is a subsequence such that all the entries are the same, which is
as long as possible: that is, either a row of 1s with 0s at each end, or a row of 0s with
1s at each end. Thecorrelationof two sequencesa andb is defined to be∑aibi . The
correlation of the sequencea with a cyclic shift of itself is called anautocorrelation
of a; it is in phaseif the shift is zero, andout of phaseotherwise. Thus, the autocor-
relation is∑aiai+m, where the subscripts are modn; it is in phase ifm= 0 and out
of phase otherwise. (Sometimes in the literature a renormalisation is applied to the
correlation; this doesn’t affect the postulates below.)

Golomb’s postulates are the following:

(G1) The numbers of 0s and 1s in the sequence are as near as possible ton/2 (that
is, exactlyn/2 if n/2 is even, and(n±1)/2 if n is odd).

(G2) The number of runs of given length should halve when the length is increased
by one (as long as possible), and where possible equally many runs of given
length should consist of 0s as of 1s.

(G3) The out-of-phase autocorrelation should be constant (independent of the shift).

A sequence satisfying these postulates is called apseudo-noise sequenceor PN-
sequence.

For example, consider the sequence

000100110101111

which we regard as being continued for ever in cyclic fashion. There are seven 1s and
eight 0s, so (G1) is true. The runs are as follows:

• four of length 1, two 0s (beginning at positions 8 and 10) and two 1s (beginning
at 3 and 9);

• two of length 2, one 00 (beginning at 4) and one 11 (beginning at 6);

• one of length 3, 000 beginning at 0;

• one of length 4, 1111 beginning at 11.
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So (G2) is satisfied. For (G3), compare the sequence with each of its cyclic shifts:

000100110101111
100010011010111
110001001101011
111000100110101
111100010011010
011110001001101
101111000100110
010111100010011
101011110001001
110101111000100
011010111100010
001101011110001
100110101111000
010011010111100
001001101011110

We see by inspection that the autocorrelation of any two rows is equal to 4. Of course
the in-phase autocorrelation is 8.

The sequences generated by shift registers are not of course random. In Kol-
mogorov’s sense, they are very far from being random, since they are generated by a
very simple machine. However, they are pseudo-noise sequences in Golomb’s sense:

Theorem 9 The output sequence of any primitive shift register satisfies Golomb’s pos-
tulates.

Proof The proof depends on the fact that, in one period of a primitiven-bit shift
register, every non-zeron-tuple occurs exactly once, and the all-zeron-tuple never
occurs.

To show postulate (G1): of the 2n−1 possible non-zeron-tuples, 2n−1−1 begin
with zero and 2n−1 with one; so the cycle contains 2n−1−1 zeros and 2n−1 ones, as
required.

Postulate (G2) follows by a similar argument. To count runs of zeros and ones of
lengthk, we have to count how many non-zerok-tupes begin with 01. . .10 or 10. . .01,
with a run ofk digits between two digits of the other kind. Fork < n−1 there are
obviously 2n−k−2 of each, since the remainingn− k− 2 digits are arbitrary. The
total number of runs of lengthk is thus 2n−k−1, and this number halves each time we
increasek by one (up ton−2).

We have to look atk = n−1 andk = n separately. A run ofn or more zeros cannot
occur. Son−1 consecutive zeros must form a run, and this happens once (since the
sequence 10. . .0 occurs once). A sequence ofn ones occurs once, and there cannot
be a longer sequence (sincen+1 ones would contain two sequences ofn), son ones
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form a run 01. . .10. It follows that there is no run ofn−1 ones, since the firstn terms
01. . .1 would agree with the firstn terms in the run of lengthn.

Summarising, the numbers of runs are given in the table, wherek≤ n−2:

k runs of 0s runs of 1s total
k 2n−k−2 2n−k−2 2n−k−1

. . . . . . . . . . . .
n−2 1 1 2
n−1 1 0 1

n 0 1 1

So (G2) holds.
We will not prove (G3) here; the proof uses the theory of finite fields. In fact, the

string of length 15 which we used in the preceding chapter is the output of the shift
register with which we began this chapter.

Breaking a shift register

Although primitive shift registers have many good properties, such as satisfying Golomb’s
postulates, they have one fatal flaw: it doesn’t take much information to break a stream
cipher based on a shift register.

Theorem 10 Suppose that a stream cipher is based on an n-bit shift register. Suppose
that2n consecutive bits of ciphertext and the corresponding plaintext are known. Then
the cipher can be broken.

Proof: From the 2n bits of ciphertext and corresponding plaintext, we obtain 2n
consecutive bits of the keystring, sayu0,u1, . . . ,u2n−1. From Proposition 5, we have

un = a0u0 +a1u1 + · · ·+an−1un−1,

un+1 = a0u1 +a1u2 + · · ·+an−1un,

. . .

u2n−1 = a0un−1 +a1un + · · ·+an−1u2n−2

This looks like a set of linear equations for theus, with theas as coefficients. But
remember that in this case we know theus but not theas. So we regard them as equa-
tions for the unknownsa0, . . . ,an−1. There are equally many equations as unknowns
(namelyn), and it is possible to show that the equations have a unique solution.

Thus we can determine the shift register, and then simulate its action (starting with
the configuration(u0, . . . ,un−1) to find the entire keystring.

The moral of the story is that any device that produces a long-period sequence
from a small amount of data is vulnerable.
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Example: Suppose that 11010110 is part of the output of a 4-bit shift register. We
obtain the equations

0 = a0 + a1 + a3,
1 = a0 + a2,
1 = a1 + a3,
0 = a0 + a2 + a3.

These equations have solutiona0 = 1, a1 = 0, a2 = 0, a3 = 1. So the shift register has
polynomialx4 +x3 +1, and a period of its output is

1101011001000111

We see that the shift register is primitive.

How could 2n bits of plaintext be obtained? There are a number of methods. First
of all, by guesswork. If Alice always starts her letters with “Dear Bob,” we can make
use of this fact. Another method would be to physically steal the plaintext from either
Alice or Bob.

The breaking of the Fish cipher illustrates how Alice’s carelessness can help Eve.
The first step that led to the breaking of the Fish cipher occurred when the cryptana-
lysts discovered that two long messages had been enciphered using the same key (that
is, the same settings and initial state of the wheels). Thus, we have

z= p⊕k, z′ = p′⊕k,

where⊕ here denotes bitwise binary addition. From the properties of binary addition,
we deduce that

z⊕z′ = p⊕ p′.

This means that, when the two ciphertexts are added, the key disappears, and we have
the sum of two plaintexts. Now these can be teased apart by frequency analysis, to
find the two plaintextsp andp′. Now we can find the keyk = p⊕z. The cryptanalysts
used the key to deduce the structure of the cipher machine. This is similar to (but
rather more complicated than) our use of 2n bits of key to break ann-bit shift register.

Worked example The seven-bit ASCII coderepresents letters, digits, and punctu-
ation as characters from the set of integers in the range 32. . .127; the capital letters
A...Z are represented by 65. . .90, and lower-case lettersa...z by 97. . .112. In-
tegers in the range 0. . .31 are used for control codes. The integers are then written in
base 2, as 7-tuples of zeros and ones.
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You intercept the string

0000110110111010101111110111010011011110010011110000101100010101010101

You have reason to believe that it is a message in seven-bit ASCII encrypted by means
of a stream cipher based on a seven-bit shift register, and that the first two letters of
the message areSu. Decrypt the string.

Solution The 7-bit ASCII code forSu is 10100111110101. Subtracting these
fourteen bits of plaintext from the first fourteen bits of ciphertext gives us fourteen
bits of key: 10101010011011. So the equations for the shift register are

0 = a0 + a2 + a4 + a6

0 = a1 + a3 + a5

1 = a0 + a2 + a4

1 = a1 + a3 + a6

0 = a0 + a2 + a5 + a6

1 = a1 + a4 + a5

1 = a0 + a3 + a4 + a6

Solving, we find(a0, . . . ,a6) = (1,1,0,1,0,0,1), so the shift register polynomial is
x7 + x6 + x3 + x+ 1. Now we can continue the key to 70 bits using the recurrence
relationxn+7 = xn+6 + xn+3 + xn+1 + xn and subtract it from the ciphertext to obtain
the plaintext, and then divide the plaintext into 7-bit blocks and decode each block to
obtain the message:Surrender!

Appendix: Finite fields

This material is not part of the course. But any serious investigation of shift registers
must observe that they are very closely connected with finite fields. A field is a set
with two operations (addition and multiplication) in which the ‘usual rules’ apply. For
example, the rational, real or complex numbers, or the integers modulop (wherep is
prime) are fields.

The finite fields were classified by Galois around 1830:

Theorem 11 The order of a finite field must be a prime power. For every prime
power q, there is a field with q elements, and it is unique up to isomorphism.

The field withq elements is denoted by GF(q) (for ‘Galois field’) in honour of
Galois.

Two properties of finite fields are important here:
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Theorem 12 The multiplicative group of a finite field is cyclic.

This means that GF(q) contains an elementα with the property that all theq−1
non-zero elements are powers ofα. Thus,αq−1 = 1, but no smaller power ofα is
equal to 1. Such an elementα is said to be aprimitive elementof GF(q). The number
of primitive elements of GF(q) is equal toφ(q−1), whereφ is Euler’s function.

Theorem 13 Let p and p1 be primes. The fieldGF(pn) contains a subfieldGF(pm
1 ) if

and only if p= p1 and m divides n. In this case, there is a unique subfieldGF(pm) of
GF(pn).

Now let q be a given prime power. The field GF(qn) contains a unique subfield
GF(q). For each elementθ ∈ GF(qn), there is aminimal polynomialof θ over GF(q),
that is, a monic polynomial satisfied byθ. This polynomial is always irreducible, and
its degree is equal tom if the smallest subfield of GF(qn) containing GF(q) andθ is
GF(qm).

The monic polynomial ofθ has degreen if and only if θ lies in no subfield of
GF(qn) containing GF(q) (except GF(qn) itself). Every irreducible polynomial of
degreen over GF(q) is the minimal polynomial of exactlyn elements of GF(qn).

Now consider the case whereq = 2. We begin by reversing the procedure and
constructing GF(24) as an example. Letα be a root of the irreducible polynomial
x4+x+1 over GF(2). Thus,α4+α+1 = 0, or (since−1 = +1) α4 = α+1. We can
make a table of powers ofα as follows:

α0 = 1
α1 = α
α2 = α2

α3 = α3

α4 = α + 1
α5 = α2 + α
α6 = α3 + α2

α7 = α3 + α + 1
α8 = α2 + 1
α9 = α3 +α
α10 = α2 + α + 1
α11 = α3 + α2 + α
α12 = α3 + α2 + α + 1
α13 = α3 + α2 + 1
α14 = α3 + 1
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andα15 = 1 = α0, so the sequence repeats (like the shift register). We see thatα is a
primitive element of the field GF(24); the field consists of zero and the fifteen powers
of α.

Using this table as a table of logarithms, we can do arithmetic in the field. For
example,

(α2 +α+1)+(α3 +α2 +α) = α3 +1,

(α2 +α+1) · (α3 +α2 +α) = α10 ·α11= α6 = α3 +α2.

Now let β = α7. We have

β2 = α14 = α3 +1,

β3 = α6 = α3 +α2,

β4 = α13 = α3 +α2 +1.

So we see thatβ4 = β3 +1, so thatβ satisfies the primitive polynomialx4 +x3 +1.
Similarly we find thatγ = α3 satisfies the irreducible but not primitive polynomial

x4 + x3 + x2 + x+ 1, while δ = α5 has minimal polynomialx2 + x+ 1 and lies in a
subfield GF(4) consisting of the elements 0,1,α5,α10.

The three irreducible polynomials of degree 4 each have four roots. The irreducible
polynomialx2+x+1 has two roots. The two elements 0,1 have minimal polynomials
x andx+1 respectively of degree 1. Thus all elements of GF(16) are accounted for.

Theorem 14 Let θ be an element ofGF(2n) with minimal polynomial f(x) of degree
n. Then f(x) is a primitive polynomial (in the sense that the associated shift register
has period2n−1) if and only ifθ is a primitive element ofGF(2n).

For example, suppose thatn = 4. The proper subfields of GF(16) are

GF(2)⊆ GF(4)⊆ GF(16),

where GF(2) is the binary fieldZ/(2). So there are 12 elements of GF(16) which lie in
no proper subfield, and thus 12/4 = 3 irreducible polynomials of degree 4. Moreover,
there areφ(15) = 2·4= 8 primitive elements of GF(16), and hence 8/4= 2 primitive
polynomials. These agree with what we found by hand earlier.

The formulae for the number of irreducible and primitive polynomials given in
Theorem 8 follow from these considerations. (We need to use the “inclusion-exclusion
principle” from Combinatorics to count the irreducible polynomials, since we have to
count elements in GF(2n) which do not lie in any proper subfield. The argument for
primitive polynomials is more direct.)
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