
MAS 335 Cryptography

Notes 2: Substitution ciphers Spring 2008

In the simplest (monoalphabetic) type of substitution cipher, we take a permutation
of the alphabet in which the plaintext is written, and substitute each symbol by its
image under the permutation. The key to the cipher is the permutation used; anyone
possessing this can easily apply the inverse permutation to recover the plaintext.

If we take a piece or ordinary English text, ignore spaces and punctuation, and
convert all letters to capitals, then the alphabet consists of 26 symbols, and so the
number of keys is

26! = 403291461126605635584000000.

This is a sufficiently large number to discourage anyone making an exhaustive test of
all possible keys. (It is approximately equal to the age of the Universe in microsec-
onds!) However, the cipher is usually very easy to break, as we will see.

We can represent a permutation by writing down the letters of the alphabet in the
usual order, and writing underneath each letter its image under the permutation. To
find the inverse, write the bottom row above the top row, and then sort the columns so
that the new top row is in its natural order. For example, the inverse of the permutation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T H E Q U I C K B R O W N F X J M P S V L A Z Y D G

is

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
V I G Y C N Z B F P H U Q M K R D J S A E T L O X W

The identity permutation is the very simple permutation which leaves each symbol
where it is: not much use for enciphering!

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Finally, the compositiong◦h of two permutations is obtained by applying firstg and
thenh to the alphabet.
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Definition A setG of permutations forms agroup if

(a) for allg,h∈ G, g◦h∈ G;

(b) the identity permutationebelongs toG;

(c) for everyg∈ G, the inverse permutationg′ belongs toG.

Theorder of the groupG is the number of permutations it contains.
For example, the set of all permutations of ann-element set is a group, called the

symmetric groupof degreen and denoted bySn. Its order isn! . The symmetric group
Sn is the set of keys for substitution ciphers with ann-letter alphabet.

Caesar cipher

The simplest possible substitution cipher is theCaesar cipher, reportedly used by
Julius Caesar during the Gallic Wars. Each letter is shifted a fixed number of places
to the right. (Caesar normally used a shift of three places). We regard the alphabet as
a cycle, so that the letter following Z is A. Thus, for example, the table below shows a
right shift of 5 places.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

The message “Send a hundred slaves as tribute to Rome” would be enciphered
asXjsi f mzsiwji xqfajx fx ywngzyj yt Wtrj . The key is simply the
number of places that the letters are shifted, and the cipher is decrypted by applying
the shift in the opposite direction (five places back).

Some practical details make the cipher harder to read. In particular, it would be
sensible to ignore the distinction between capital and lower case letters, and also to
ignore the spaces between words, breaking the text up into blocks of standard size, for
example

XJSIF MZSIW JIXQF AJXFX YWNGZ YJYTW TRJXX

(We have filled up the last block with padding.)
The Caesar cipher is not difficult to break. There are only 26 possible keys, and

we can try them all. In this case we would have

XJSIF MZSIW JIXQF AJXFX YWNGZ YJYTW TRJXX
YKTJG NATJX KJYRG BKYGY ZXOHA ZKZUX USKYY
ZLUKH OBUKY LKZSH CLZHZ AYPIB ALAVY VTLZZ
...
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SENDA HUNDR EDSLA VESAS TRIBU TETOR OMESS
...

Almost certainly only one of the twenty-six lines will make sense, and it is easy to
break it into words and discard the padding.

There are other tricks that can be used, which will be important later. As we will
see in the next section, in English text, the commonest letter is usually E. Also, the
consecutive letters R, S, T, U are common, and are followed by a block V, W, X, Y,
Z of relatively uncommon letters. If we can spot these patterns, then we can make a
guess at the correct shift. Our example is too short to show much statistical regularity;
but (if we assume that the last two Xs are padding) the commonest letter is J, and the
letters W, X, Y, Z are common while A, B, C, D, E are rare, so we would guess that the
shift is 5 (which happens to be correct). We will look at this again in the next section.

We will in future use the convention that the plaintext is in lower case and the
ciphertext in capitals.

A famous modern instance of a Caesar shift was HAL, the rogue computer in the
science-fiction story2001: A Space Odyssey. The computer’s name is a shift of IBM.
(The author, Arthur C. Clarke, denied that he had deliberately done this.)

The Caesar shifts form a group. If the alphabet isA = {a0,a1, . . . ,aq−1}, then the
shift by i places can be written asfi : a j 7→ a j+i modq, and we have

fi1 ◦ fi2 = fi1+i2 modq,

f0 = e,

f ′i = f−i modq.

The order of this group isq.

Letter frequencies

In any human language (and in most artificial languages as well), words are not ran-
dom combinations of symbols, and so they will show various statistical regularities.
For example, in English, the commonest letter is E; in a typical (not too short) piece
of English, about 12% of all the letters will be E.

As an example, in the text ofAlice’s Adventures in Wonderland, by Lewis Carroll
(AAIW for short), the frequencies of the letters (ignoring spaces and punctuation)
are given in Table 1 (the figure given is the average number of occurrences among
100 letters), in the column labelled “AAIW”. (The figures in the table are the average
numbers of occurrences among 100 letters of text.) The columns labelled “Meaker”
and “Garrett” are from the booksCryptanalysisby Helen Fouch́e Gaines, andMaking,
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Breaking Codesby Paul Garrett. Gaines (whose book was published in 1939) took the
numbers from a table by O. P. Meaker; Garrett, on the other hand, simply analysed a
megabyte of old email. The French and Spanish statistics are also quoted by Gaines,
from tables by M. E. Ohaver,Cryptogram Solving. The last column will be explained
later.

Note that even for English text the figures vary, though not too much: in AAIW
the most frequent letters, in order, are E, T, A, O, I, H, N, S, R, D, L, U; in Gaines’
table, the order is E, T, A, O, N, I, S, R, H, L, D, U. However, in other languages the
order is quite different. For example, in German, the order is typically E, N, I, R, S,
A, D, T, U, G, H, O.

Figure 1 shows a histogram of the expected frequencies, together with the actual
letter frequencies in the message encrypted by Caesar’s cipher. It is clear by eye that
the best fit is obtained if the actual message is shifted five places left.

Actual

Expected

Figure 1: Expected and actual letter frequencies in Caesar cipher

Pairs of letters (referred to asdigrams) also have their characteristic frequencies.
Some of the most common in English are given in Table 2. Meaker’s tables, and those
of Pratt and Fraprie, are taken from Gaines.

One can also analyse trigrams, or longer sequences. Among the most commmon
trigrams in English are THE, ING, THA, AND, ION.
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Letter AAIW Meaker Garrett French Spanish Gadsby
A 8.15 8.05 7.73 9.42 12.69 10.96
B 1.37 1.62 1.58 1.02 1.41 2.14
C 2.21 3.20 3.06 2.64 3.93 2.66
D 4.58 3.65 3.24 3.38 5.58 4.12
E 12.61 12.31 11.67 15.87 13.15 0.00
F 1.86 2.28 2.14 0.95 0.46 2.15
G 2.36 1.61 2.00 1.04 1.12 3.61
H 6.85 5.14 4.52 0.77 1.24 4.91
I 6.97 7.18 7.81 8.41 6.25 8.81
J 0.14 0.10 0.23 0.89 0.56 0.23
K 1.07 0.52 0.79 0.00 0.00 1.18
L 4.37 4.03 4.30 5.34 5.94 5.32
M 1.96 2.25 2.80 3.24 2.65 2.07
N 6.52 7.19 6.71 7.15 6.95 8.61
O 7.58 7.94 8.22 5.14 9.49 10.42
P 1.40 2.29 2.34 2.86 2.43 1.91
Q 0.19 0.20 0.12 1.06 1.16 0.05
R 5.02 6.03 5.97 6.46 6.25 4.77
S 6.05 6.59 6.55 7.90 7.60 6.97
T 9.93 9.59 9.53 7.26 3.91 8.50
U 3.22 3.10 3.21 6.24 4.63 4.16
V 0.78 0.93 1.03 2.15 1.07 0.31
W 2.49 2.03 1.69 0.00 0.00 2.80
X 0.13 0.20 0.30 0.30 0.13 0.04
Y 2.11 1.88 2.22 0.24 1.06 3.18
Z 0.07 0.09 0.09 0.32 0.35 0.11

Table 1: Letter frequencies
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Digraph AAIW Meaker P & F Garrett
TH 3.23 3.51 3.16 3.18
HE 3.23 2.51 1.08 2.17
AN 1.48 1.72 1.08 1.59
IN 1.89 1.69 1.57 2.59
ER 1.68 1.54 1.33 1.95
RE 1.07 1.48 1.25 1.85

Table 2: Frequencies of common digrams

As an indication of how these frequencies reflect the language, here are three “ran-
dom” pieces of text. In each case, in order to split the text into words, a 27-letter
alphabet (consisting of the 26 letters and the space character) has been used; any punc-
tuation characters in the original text are regarded as spaces, and a string of spaces is
reduced to a single space. In the first piece of text, the computer has generated random
text using the same letter and space frequencies as in AAIW. In the second, the digram
frequencies have been used; and in the third, trigram frequencies are used. Notice how
the random texts resemble the original more closely as longer sequences are used.

Letter frequencies

garyrndtdbleayir hedryeeabeslt tyt watat vnot sooannaheoynoc hhh ndn e
n mom scie cehealiiea yneuries u imn h utootpn eomvtet ia ecadehatyba
eub e lsrv utl ecnrhmer etwtata nstp thttwttl ht tth dg uyatnpbs
toinhpitehttesttthotrehushilwlhtaehyto rovt aget eaeaflrwu gnat asrl eeri
luikghreborelephre hhvde egnso nodieiha dcoeothgoa tsabns s cneo
ndnhfbtsont ne cpnoed m t old fzl rohuiinirtosthe arrn genialendtr hhntn
tsmtr osnol ngohne aiauumnie p hhb te t gtt o araswc tak omlhidtaoi er
rlumh ceca tlo acnimal tto sosi ah htoe c sty laaahsouseshi oae oh afasth
wnsihnaeoawoi aesnhi yb vresptn gas elplteot or annner en s e dfhat tso
nmlr te euhdre ltsnsr f reesd s cchtehavns uhtiwalo tahot lrrnnt

Digram frequencies

tre wherrltau ar a inor hee ly goove aye abinglothased as an nontte fin
whike it im yon coveng a per weker ligo d ated ay s red ase ous andldrthi
i anory acke owhalist the w an thi tuth abinwaly lyton bofforyilenour t n
ns art asod h athostugir telidademifure bing hee hedertliryouricell araks
edshe capl asove a asino thaf ar at heldryirry id and aghanorsith anesance
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age angh oum st athed w waronoubit ir bellea a d a at alle t quceendld
hello ag t we mar ncerin avesabout ag thedoed sherkishe ano ai t ithe
alkeyorated abomor p rs he ag a itainokittina acerr s abupped iranchendl
whecthede awhe athai asus oo i and a s shermfu bar and a thre mer s aig it
at a an y b alerd a taryouga shed f aithon iseal anghetheme as put m s n d

Trigram frequencies

ithe pits as but she i hat she peasessid to this begit a said to yout ands i
loome four shone shemalice cou at sion to one se al the sped ithe gand
nerse shereaverybottly embecon unnoth there pen the droqueelf land
gloorger an tol the came in go the could ner so des on a wit ite bee ot the
spearep onfor hown aft she is ander han ithe quive cut of ano mut andly
wit it wrilice dookinam ther heseen everse ter and owles a saing alice
way le jusishe s to its torrock ing teopersed show as dif to happen theirs
itte heam whis way vered ant his a sairs handeauteree way murse begs a
as sid s yout of ence wo cho and th ord des ned be that speopead the
timessizaris ank th all guittelf to holl his and execin hand th t

Breaking a substitution cipher

Breaking a cipher is an art; it cannot be done by applying a formula. But there are some
rules to follow when doing this job. Here is a partly worked example of breaking a
substitution cipher; you should complete the working.

The ciphertext is:

RZOLB QJOWW QBWIR DQFQE VICOB OKOLR UVIDW QFMRO IVTOH
OVZMA UFUIR UVEWM DWOBH UOVYO RQRZO UBWRM TOVRW RZOSZ
ITRQW COIBQ DOTUO VYORQ RZOWR MTOVR BOYRQ BWIVT RQRZO
WRMTO VRAIT OWRIR MROWC ZUYZD QBOHO BSZIB TFSML QVRZO
ARZOL BQJOW WQBCI WJUVO TUJZO DOEIV ZUWRO IYZUV EIAUV
MROFI ROQBY QVRUV MOTIA UVMRO FQVEO BRZIV RZOJU XOTRU
AOIVT WZQMF TRZUW ZILLO VRZOW RMTOV RWCZQ JIUFO TRQFO
IHORZ OFOYR MBOBQ QAUAA OTUIR OFSCO BORZO AWOFH OWJUV
OTUVI TTURU QVRZO LBQJO WWQBC IWJUV OTUJZ OWZUB KOTOX
LFIUV UVEIT UJJUY MFRLI WWIEO QBUJZ OJIUF OTRQE ORRZB
QMEZR ZOWSF FIDMW ZOCIW JUVOT UJZOF OJRRZ OYURS JQBIT
ISCUR ZQMRR UOBOY RQBWL OBAUW WUQVI VTUJZ OAIBB UOTCI
WIFFQ COTQV FSQVO TISQJ JJQBR ZOLMB LQWOR ZOYUR SJQBU
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RWLIB RRQQK IZIVT UVYQV RBQFF UVERZ OLBQJ OWWQB WIVTR
ZOSCO BOJQB YOTRQ RIKOI VQIRZ VQRRQ FOIHO DQFQE VIUVW
OIBYZ QJAQB OFMYB IRUHO QBFOW WQVOB QMWLQ WRWXX

We first count the frequencies of the letters. The commonest of the 715 letters,
with their frequencies, are given in the table.

O R Q I U W V B Z
99 72 59 50 49 48 45 43 43

We also notice that RZ is a very common digram, with 23 occurrences. So we
might guess the following identifications:O = e, R = t, Z = h . This gives

theLB QJeWW QBWIt DQFQE VICeB eKeLt UVIDW QFMte IVTeH
eVhMA UFUIt UVEWM DWeBH UeVYe tQthe UBWtM TeVtW theSh
ITtQW CeIBQ DeTUe VYetQ theWt MTeVt BeYtQ BWIVT tQthe
WtMTe VtAIT eWtIt MteWC hUYhD QBeHe BShIB TFSML QVthe
AtheL BQJeW WQBCI WJUVe TUJhe DeEIV hUWte IYhUV EIAUV
MteFI teQBY QVtUV MeTIA UVMte FQVEe BthIV theJU XeTtU
AeIVT WhQMF TthUW hILLe VtheW tMTeV tWChQ JIUFe TtQFe
IHeth eFeYt MBeBQ QAUAA eTUIt eFSCe Bethe AWeFH eWJUV
eTUVI TTUtU QVthe LBQJe WWQBC IWJUV eTUJh eWhUB KeTeX
LFIUV UVEIT UJJUY MFtLI WWIEe QBUJh eJIUF eTtQE etthB
QMEht heWSF FIDMW heCIW JUVeT UJheF eJtth eYUtS JQBIT
ISCUt hQMtt UeBeY tQBWL eBAUW WUQVI VTUJh eAIBB UeTCI
WIFFQ CeTQV FSQVe TISQJ JJQBt heLMB LQWet heYUt SJQBU
tWLIB ttQQK IhIVT UVYQV tBQFF UVEth eLBQJ eWWQB WIVTt
heSCe BeJQB YeTtQ tIKeI VQIth VQttQ FeIHe DQFQE VIUVW
eIBYh QJAQB eFMYB ItUHe QBFeW WQVeB QMWLQ WtWXX

The other common letters probably includea, i , o andn. Various clues help us to
make the right identification. For example, consider the stringtQthe , which occurs
several times. Here,the is probably either a word or the beginning of a word like
then . If this is right,tQ ends a word, and the most likely possibility is thatQ = o.

Another clue is thatWWoccurs four times in the text. Double letters are not very
common in English;ee , ll andss are the most common, so probablyW = s.

After a certain amount of guesswork of this sort, we begin to recognise more com-
plicated words, and we find eventually that the substitution is
a b c d e f g h i j k l m n o p q r s t u v w x y z
I D Y T O J E Z U P K F A V Q L G B W R M H C X S N
and the message is

The professors at Bologna were kept in absolute and even humiliat-
ing subservience to their students. They had to swear obedience to the
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student rectors and to the student-made statutes, which bore very hardly
upon them. The professor was fined if he began his teaching a minute late
or continued a minute longer than the fixed time, and should this happen
the students who failed to leave the lecture-room immediately were them-
selves fined. In addition, the professor was fined if he shirked explaining a
difficult passage, or if he failed to get through the syllabus; he was fined if
he left the city for a day without the rector’s permission, and if he married,
was allowed only one day off for the purpose. The city, for its part, took
a hand in controlling the professors, and they were forced to take an oath
not to leave Bologna in search of more lucrative or less onerous posts.

This description of employment conditions for academics in the Middle Ages is
taken from J. D. Knowles,The Evolution of Mediaeval Thought.

Two fictional accounts of substitution ciphers are the stories “The Gold Bug”, by
Edgar Allen Poe, and “The Adventure of the Dancing Men”, a Sherlock Holmes story
by Sir Arthur Conan Doyle.

Worked example Solve the following substitution cipher.

)}&@ˆ {;‘?@ (‘@,( ˆ{?}# $‘{+ˆ ‘;#:ˆ ,(‘@? }#‘:ˆ
;[ˆ‘= ){*‘! }#@‘{ %ˆ.[: ˆ;;)@ ){{#+ !ˆ:;? }#={}
,;}+ˆ @(){* ‘!}#@ )@!#@ ,(ˆ{? }#$‘{ {}@+ˆ ‘;#:ˆ
)@,(ˆ {?}#$ ‘{{}@ ˆ.[:ˆ ;;)@) {{#+! ˆ:;?} #:={}
,_ˆ%* ˆ);}& ‘+ˆ‘* :ˆ‘{% #{;‘@ );&‘$ @}:?= ){%..

Solution: This cipher is surprisingly difficult, as you will find if you try it for
yourself! A hint makes it much easier. The conclusion of the message,.. , is padding;
you are told that the letter used for padding isx . This gives a lot of information, since
. occurs twice in the rest of the message, andx is usually preceded bye in English;
so we guess that̂ is e. Now we have the sequenceex[:e;; which is probably
going to beexpress , giving us three more letters. Now finish the rest yourself!

The moral of this is that a seemingly innocent trait of the cryptographer, such as
always usingx as a filler, may give away crucial information.

Affine substitutions

The sharp-eyed will have noticed something special about the substitution used here.
It mapsa to I , b to D, c to Y, and so on; advancing the plain letter one place moves
the cipher letter back five places (or forward 21 places). In otherwords, if the letters
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of the alphabet are numbered from 0 to 25, so thata is represented by 0,b by 1, . . . ,
z by 25, then the substitution takes the form

x 7→ 8+21x (mod 26).

Such a substitution, or the cipher it generates, is calledaffine.
The Caesar shift is a special case of an affine cipher, having the form

x 7→ x+b (mod 26)

for some fixedb. The general form of an affine cipher is

x 7→ ax+b (mod 26)

for some fixeda andb. The advantage is that the key is simple; instead of needing a
general permutation of the letters, we only need the numbersa andb mod 26.

What affine ciphers are possible, and how can they be inverted?
First we must decide when an affine substitution is a permutation. Consider the

substitutionθ : x 7→ ax+b (modn). It will fail to be a permutation if there exist two
distinctx1,x2 with

ax1 +b≡ ax2 +b (modn),

that is,ay≡ 0 (modn), wherey = x2− x1. Soθ is a permutation if and only if the
congruenceay≡ 0 (modn) has a solutiony 6≡ 0 (modn).

Let d be the greatest common divisor ofa andn. Then, say,a = a1d andn = n1d
for integersa1,n1. Suppose thatd > 1, so thatn1 < n. Puttingy = n1, we have

ay= a1dn1 = a1n≡ 0 (modn),

soθ fails to be a permutation.
Conversely, suppose thatd = gcd(a,n) = 1. By Euclid’s Algorithm (see the end of

this chapter), there exist integersu,v such thatau+nv= 1. Now, if ay≡ 0 (modn),
then

y = (au+nv)y = u(ay)+n(vy)≡ 0 (modn),

soθ is a permutation.
We conclude:

Theorem 1 The affine map x7→ ax+b is a permutation if and only ifgcd(a,n) = 1.

What happens if we compose two such maps? Writeθa,b for the mapx 7→ ax+b
(modn), where gcd(a,n) = 1. We have

θa,b◦θa′,b′ : x 7→ ax+b 7→ a′(ax+b)+b′,
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soθa,b◦θa′,b′ = θaa′,ba′+b′.
The identity permutationx 7→ x is the mapθ1,0. So to find the inverse ofθa,b in the

form θa′,b′, we have to solve the congruences

aa′ ≡ 1 (modn),
ba′+b′ ≡ 0 (modn).

The first congruence has a unique solution modn, which can be found by Euclid’s
Algorithm as before. Then the second congruence also has a unique solution, namely
b′ ≡−ba′ (modn).

In particular, withn = 26, we want to invert the mapθ21,8. By trial and error (or
by Euclid’s Algorithm), 21·5≡ 1 (mod 26); and then−5 ·8≡ 12 (mod 26). So
the inverse ofθ21,8 is θ5,12.

Definition Euler’s totient functionφ is the function on the natural numbers given by

φ(n) =
{

number of congruence classesa modn
such that gcd(a,n) = 1.

We give a formula for it, which will be proved later.

Theorem 2 Let n= pa1
1 pa2

2 · · · par
r , where p1, p2, . . . , pr are distinct primes and

a1,a2, . . . ,ar > 0. Then

φ(n) = pa1−1
1 (p1−1)pa2−1

2 (p2−1) · · · par−1
r (pr −1).

For example, 26= 2·13, soφ(26) = 1·12= 12. The congruence classes coprime
to 26 are represented by the odd numbers from 1 to 25 excluding 13.

Theorem 3 The set of affine permutations mod n is a group of order n·φ(n).

We have verified the group properties in the earlier argument. For the order, note
that there areφ(n) choices fora andn choices forb.

There are thus 26·12= 312 affine permutations. If we know or suspect that a sub-
stitution cipher is affine, we could try all 312 keys, though this is not trivial by hand.
The method of looking for patterns of consecutive letters (as used to crack the Caesar
cipher) does not apply. Like any substitution cipher, an affine cipher is vulnerable to
frequency analysis. Its advantage is the small size of the key (two numbers rather than
a complete permutation.)
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Worked example Decrypt the following affine substitution cipher:

JZQOU DQGKZ UULYU MKUOX LQJQJ ZQZCW ZQDYU MDXUJ
QRJCE LQEDR CRWGL UUIEJ JZQEP QDEWQ QEDRC RWGCR
JZCGK ZEDJJ ZQYJQ LLJZQ GJUDY

You are given that the frequency distribution in the ciphertext is as follows:

C D E G I J K L M O P Q R U W X Y Z
6 8 7 5 1 13 3 6 2 2 1 15 6 10 4 2 4 10

Solution The commonest letterQ in the given cipher is likely to bee. We also
see that the trigramJZQ occurs five times and so is likely to bethe . This givesJ=t
andZ=h.

The lettersQandZ arex16 andx25 (whereq = 26 here), whilee andh andx4 and
x7. Thus the parametersc andd satisfy

4c+d ≡ 16 (mod 26),
7c+d ≡ 25 (mod 26),

from which we findc = 3 andd = 4. Now we can compute the inverse of this affine
transformation, which will be the decryption map: if the inverse isi 7→ c′i + d′, then
we have (using the formula we worked out earlier)

3c′ = 1, so c′ = 9;

4c′+d′ = 0, so d′ = 16.

From this the entire substitution can be worked out, and we find the plaintext to be

themo resch oolyo ucomp letet hehig heryo urpot
entia learn ingsl ookat theav erage earni ngsin
thisc hartt heyte llthe story

or, correctly spaced and with punctuation,

The more school you complete, the higher your potential earnings. Look
at the average earnings in this chart; they tell the story!

Making a substitution cipher safer

A substitution cipher can be solved by frequency analysis, and so is insecure for all
but the shortest messages. However, there are some improvements that can be made.
The first two rely on using a different alphabet for the ciphertext, with more characters
than the plaintext alphabet. For example we could use an alphabet of 100 characters,
represented by symbols 00,01, . . . ,99.
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Nulls: These are additional symbols in the cipher alphabet which do not have any
meaning but are inserted in random positions to confuse the frequency analysis.

Homophones: We can translate the same letter in plaintext by several different let-
ters in ciphertext. For example, if we use a 100-character cipher alphabet, we can as-
sociate about as many characters with each plaintext letter as its percentage frequency
in normal text (say, 12 characters fore, 9 for t , and so on). Then we randomly decide
which character to substitute for each occurrence of a letter. In the ciphertext, each
character will occur approximately the same number of times. However, the ciphertext
is still not random, and patterns of digraphs and trigraphs can be recognised.

Use of language: We can further confuse the analysis by using words from other
languages, or by careful choice of words. As an example of what can be done, at least
two English novels have been written containing no occurrence of the lettere, the
commonest letter in English. One of these isGadsby, by Ernest Vincent Wright. The
author tied down theE key of his typewriter to write the book. The first paragraph
reads as follows:

If youth, throughout all history, had had a champion to stand up for it;
to show a doubting world that a child can think; and, possibly, do it prac-
tically; you wouldn’t constantly run across folks today who claim that “a
child don’t know anything.” A child’s brain starts functioning at birth; and
has, amongst its many infant convolutions, thousands of dormant atoms,
into which God has put a mystic possibility for noticing an adult’s act, and
figuring out its purport.

To a casual glance, there is nothing odd about this; but it would pose an obvious prob-
lem for a cryptanalyst if encrypted with a substitution cipher. A frequency analysis of
Gadsbyis included in Table 1.

The novelA Voidis even more remarkable, having been translated by Gilbert Adair
from the French novelLa Disparitionby Georges Perec, which also lacked the lettere.

Another trick is to write words “phonetically”, or to use text-messaging abbrevia-
tions.

Features of text messaging language such as phonetic spelling (such as “nite” for
“night”), the common omission of vowels (“txt” for “text”), use of abbreviations (such
as AFAIK for “as far as I know”), use of numerals2, 4 and 8 for to , for and
ate , and use of “emoticons” such as;-) as an essential part of the text, would give
frequency analysis quite different from standard English. I don’t know whether such
analysis of a body of text messages has been done.
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Transposition: The substitution can be combined withtransposition, that is, per-
muting the order of the characters in the ciphertext in a specified way. This will help
to destroy the patterns of digram and trigram frequencies.

With these improvements, even a substitution cipher can be effective for a short
message which will not receive very sophisticated analysis.

Number theory

In this section we give more details of some of the number theory which underlies our
discussion of affine ciphers.

Euclid’s algorithm

Euclid’s algorithm is a procedure to find the greatest common divisor of two integers.
In the form of a one-line recursive program it can be written as follows:

if b = 0 then gcd(a,b) := a else gcd(a,b) := gcd(b,a modb) fi

wherea modb means the remainder on dividinga by b.
For example,

gcd(30,8) = gcd(8,6) = gcd(6,2) = gcd(2,0) = 2.

The algorithm can also be used to write gcd(a,b) in the formua+ vb for some
integersu,v. We express each successive remainder in this form until we reach the
last non-zero remainder, which is the gcd. In the above example,

6 = 30−3·8
2 = 8−1·6

= 8− (30−3·8)
= (−1) ·30+4·8,

sou =−1, v = 4.
This can be used to find inverses modn. For example, gcd(21,26) = 1, and Eu-

clid’s algorithm shows that 1= (−4) ·26+ 5 ·21; so 5·21≡ 1 (mod 26), and the
inverse of 21 mod 26 is 5.
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Euler’s function

In this section we prove Theorem 2. We begin with the theorem known as theChinese
Remainder Theorem.

The following discussion is based on the section on Chinese mathematics in George
Gheverghese Joseph,The Crest of the Peacock: Non-European Roots of Mathematics,
Penguin Books 1992. The fourth-century textSun Tsu Suan Ching(Master Sun’s
Arithmetic Manual) contains the following problem:

There is an unknown number of objects. When counted in threes, the
remainder is 2; when counted in fives, the remainder is 3; when counted
in sevens, the remainder is 2. How many objects are there?

The problem asks for an integerN such thatN ≡ 2 (mod 3), N ≡ 3 (mod 5), and
N ≡ 2 (mod 7). One solution is given as

N = 2·70+3·21+2·15= 233;

it is clear that adding or subtracting a multiple of 105 from any solution gives another
solution; so the smallest solution is

N = 233−2·105= 23.

A folk-song gives the mnemonic:

Not in every third person is there one aged three score and ten,
On five plum trees only twenty-one boughs remain,
The seven learned men meet every fifteen days,
We get our answer by subtracting one hundred and five over and

over again.

Why does it work? Observe that 70 is congruent to 1 mod 3, to 0 mod 5, and to
0 mod 7, and similarly for 21 and 15; then 70a+21b+15c is congruent toa mod 3,
to b mod 5, and toc mod 7, as required. But how do we find these numbers 70, 21 and
15? Well, the first number is supposed to be divisible by 5 and 7, so is a multiple of
35; then 35 is congruent to 2 mod 3, so 2.35 is congruent to 2.2, which is congruent
to 1 mod 3, as required. (In this last step we multiplied by theinverseof 2 modulo 3.
In more difficult cases we can use Euclid’s algorithm to find the appropriate inverse.)

A similar procedure works in general. The fact that we can always find numbers
with the required congruence conditions is not entirely obvious, but follows from Eu-
clid’s algorithm using the fact that the moduli are coprime. We give the result just for
two moduli: it is easily extended to any number by induction.

Let Z/(n) denote the set of congruence classes modn. It is clear that, ifx≡ x′

(modmn), thenx≡ x′ (modm); so, forx∈ Z/(mn), there is a well-defined element
x modm of Z/(m). Similarly with n replacingm.
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Theorem 4 (Chinese Remainder Theorem)If gcd(m,n) = 1, then the map F from
Z/(mn) to Z/(m)×Z/(n) defined by

F(x) = (x modm,x modn)

is a bijection.

Proof: Suppose thatF(x) = F(x′). Thenx modm = x′ modm, that is,m divides
x−x′. Similarly n dividesx−x′. Sincemandn are coprime, it follows thatmndivides
x−x′, so thatx = x′ (as elements ofZ/(mn)). ThusF is one-to-one.

Now |Z/(mn)|= mn= |Z/(m)×Z/(n)|; soF must also be onto, and thus a bijec-
tion.

This proof is non-constructive, whereas the original Chinese argument gave an
algorithmic way to compute the inverse ofF . This can be generalised as follows.
Since gcd(m,n) = 1, Euclid’s algorithm shows that there exist numbersa andb such
thatam+bn= 1. Now we see that

am≡ 0 (modm), am≡ 1 (modn),
bn≡ 1 (modm), bn≡ 0 (modn),

so the solution to the simultaneous congruences

x≡ y (modm), x≡ z (modn)

is given by
x≡ bny+amz (modmn).

Remark: In factF is aring isomorphism: this simply means thatF(x+x′) = F(x)+
F(x′) andF(xx′) = F(x)F(x′).

Now gcd(x,mn) = 1 if and only if gcd(x,m) = 1 and gcd(x,n) = 1. Since Euler’s
function gives the number of congruence classes coprime to the modulus, the Chinese
Remainder Theorem implies that

φ(mn) = φ(m)φ(n)

if gcd(m,n) = 1.
This extends to products of any number of pairwise coprime factors. Thus

φ(pa1
1 · · · par

r ) = φ(pa1
1 ) · · ·φ(par

r )

if p1, . . . , pr are distinct primes.
So, to complete the proof of the theorem, we have to show only thatφ(pa) =

pa−1(p−1) = pa− pa−1 for p prime anda > 0. This holds because, of thepa con-
gruence classes modpa, the ones not coprime topa are precisely those divisible byp,
of which there arepa−1.
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