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Quantum effects

There was a time when the newspapers said that only twelve men under-
stood the theory of relativity. I do not believe there ever was such a time
. . . On the other hand, I think I can safely say that nobody understands
quantum mechanics.

Richard Feynman,
The Character of Physical Law

In this final section we consider some very recent developments based on the mys-
teries of quantum theory. We do not have time here to do more than scratch the surface
of what quantum theory has to say about the behaviour of subatomic systems, and how
this behaviour is relevant to cryptography.

There are two aspects which we treat in turn. First, the possibility of building a
quantum computer has been raised. Such a gadget could efficiently solve the hard
problems on which modern public-key cryptography depends (factorisation and dis-
crete logarithm). Second, a cryptosystem has been proposed which allows Alice and
Bob to detect if their communication has been compromised before any secret plain-
text is entrusted to the communication channel.

Quantum basics

Like any physical theory, the purpose of quantum mechanics is to predict the result of
a measurement on a physical system. But unlike all other theories, it does not usually
predict a single value, but offers only a probabilistic prediction, along the lines “the
electron’s spin will be in the direction of the magnetic field with probability1

2, and
will be in the opposite direction with probability12”.
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At the same time, the system is affected by the measurement; the action of mea-
surement changes the state of the system into one which depends on the result of the
measurement.

We turn these principles into a more mathematical format. According to quantum
mechanics, the state of a physical system is described by a unit vector in a certain
complex inner product space (more precisely, a Hilbert space) called thestate space,
whose dimension may be finite or infinite depending on the system being considered.

An unobserved system “evolves” by what might be regarded as a rotation of the
state space. More precisely, a system in statev at a certain time is in stateUv at some
later time, whereU is aunitary transformation (this means thatU−1 = U

>
, where the

bar denotes complex conjugation. The exact form ofU is determined by the laws of
quantum mechanics (the Schrödinger equation).

However, when we make a measurement on the system, something different hap-
pens. A measurement is described by aHermitiantransformationH of the state space
(one satisfyingH = H

>
). Now a standard theorem of linear algebra says that, ifH is

Hermitian, then the space has an orthonormal basis consisting of eigenvectors ofH.
We assume for simplicity that the eigenvalues ofH are all distinct, so thatHe= λe
holds for a one-dimensional space of eigenvectorse (given the eigenvalueλ). Now the
laws of quantum mechanics state the following:

• The result of a measurement associated withH is an eigenvalueλ of H.

• If the system was in statev before the measurement, wherev = ∑aλeλ is the
expression forv in terms of an orthonormal basis of eigenvectors, then the prob-
ability that the result of the measurement isλ is |aλ|2. (These probabilities sum
to 1 becausev is a unit vector.)

• If the result of the measurement isλ, then immediately after the measurement
the state of the system has “jumped” toeλ.

Another theorem of linear algebra asserts that the eigenvalues of a Hermitian trans-
formation are real numbers. This corresponds to the statement that the result of any
physical measurement is a real number, even though the formalism uses vector spaces
over the complex numbers.

Quantum computing

The standard systems considered in a quantum theory course, such as the hydrogen
atom, have infinite-dimensional state spaces. However, to describe how to deal with
a single bit of information quantum-mechanically, we only need a two-dimensional
state space, whose basis vectors describe the two possible results of measuring the bit.
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Thus, aqubit (short for “quantum bit”) is a system whose state space is two-
dimensional, spanned by the vectorse0 ande1. The operatorH associated with the
measurement of the bit is

H =
(

0 0
0 1

)
relative to this basis. ThusHe0 = 0 andHe1 = e1. So the eigenvalues ofH are 0 and
1, and the corresponding eigenvectors aree0 ande1.

A typical state of the system (a unit vector in this space) has the formae0 + be1,
wherea andb are complex numbers satisfying|a|2 + |b|2 = 1. If the system is in this
state, we regard it as being in asuperpositionof the statese0 (bit value 0) ande1 (bit
value 1). If we measure the value of the bit, we find that the probability that it is zero
is |a|2, while the probability that it is one is|b|2.

The matrix

U =
1√
2

(
1 1
1 −1

)
is unitary. It satisfiesUe0 = (e0 +e1)/

√
2 andUe1 = (e0−e1)/

√
2. Suppose that we

have a circuit whose effect on a qubit (in one unit of time) is to applyU to the state
vector. If we prepare the system with the bit taking a definite value, either 0 or 1, then
one time unit later the bit is “smeared out” between the two states, that is, the result
of a measurement will be 0 with probability12, and 1 with probability1

2. Since the
equations are linear, the subsequent evolution of the system will be a superposition of
the two states describing the evolution starting from a value 0 and from a value 1. In
other words, the computer can perform two computations simultaneously!

The circuit which realizesU is called aHadamard gate.
More generally, ann-qubit system has state space which has a basis consisting of

unit vectorses, wheres runs over all 2n possible binary strings of lengthn. If we set
up the system with each qubit taking a definite value, and then pass each one through
a Hadamard gate, the resulting state will be an equal superposition of all 2n possible
states, and we have a computer which can do 2n calculations at once.

This is the basis of the power of a quantum computer. In very rough terms: with
n qubits at our disposal, we can regard the 2n strings as representing the integers
1, . . . ,2n, and we can do trial divisions ofN by all these numbers simultaneously,
arranging the circuitry so that only values which divide exactly give rise to an output.
Thus, we can factorise numbers as large as 22n with such a machine.

This is a rough description ofShor’s algorithm, which uses a quantum computer to
factorise large numbers efficiently. Space does not allow a more precise description.

Other tasks which quantum computers can do very quickly include sorting, and
solving the discrete logarithm problem. We see that neither RSA nor El-Gamal will
be secure if a practical quantum computer is ever built.
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The theory of quantum computing is well understood. The difficulties now are, in
some sense, only technological ones. However, they are very severe. Most obviously,
a quantum computer uses a single electron or atomic nucleus to store one qubit of
information. (For example, as we saw earlier, if an electron is in a magnetic field, then
a measurement of its spin will be either in the direction of the magnetic field or in
the opposite direction, and we can take these two states ase0 ande1.) Now a single
electron is very sensitive to interference from a cosmic ray or from thermal agitation
by its surroundings. Thus, errors creep in at a very high rate.

By contrast, a bit in a classical computer is stored in a transistor where the dif-
ference between “charged” and “discharged” is of the order of trillions of electrons.
A cosmic ray may eject a few of these electrons without affecting the bit. Classical
computers are extremely reliable and fault-tolerant.

Quantum cryptography

In this section we will see how one of the key properties of quantum theory, that a
measurement changes the state of the system, can be used to produce a “tamper-proof”
cipher, where Alice and Bob can tell (with probability arbitrarily close to 1) whether
Eve has been intercepting their communication, before any plaintext is actually sent.

The cryptosystem uses photons as opposed to electrons. These are the quanta of
the electromagnetic field, and except in “photon traps” in cutting-edge research labs,
they go their way at the speed of light, so are ideal for transmitting messages but
useless for computation. Some properties of photons which we will use are:

(i) A photon has a polarisation, in a direction perpendicular to the direction of travel.
(Think of it as like a wave vibrating in a direction perpendicular to the direction
of travel. This is really a simplification, since in fact a photon can have two
vibrations superimposed, but it is good enough for the argument here.) Note
that, for example, “up” and “down” describe the same polarised state.

(ii) It is possible to prepare a photon which is polarised in any prescribed direction.

(iii) We can measure the polarisation in any direction; the answer to our measurement
will be either “yes” or “no”. If the actual polarisation direction makes an angle
θ with the direction of the measurement, then the answer “yes” will be obtained
with probability cos2θ, and “no” with probability sin2θ; these sum to 1, as
probabilities should. Note that measurements in two perpendicular directions
give exactly the same information. In particular, then, if we measure in the
direction of the actual polarisation, we certainly get the answer “yes” (as cos0=
1); and if we measure perpendicular to the actual polarisation, we get the answer
“no” (as cosπ/2 = 0). In any other case, the result is random.

4



(iv) After the measurement, if the result was “yes”, then the photon will be polarised
in the direction of the measurement; if the result was “no”, it will be polarised
in the perpendicular direction.

The cryptosystem now works as follows. Alice and Bob use quantum effects to
share a random sequence of bits, which they then use as a conventional one-time pad.
We assume that all channels of communication between them are tapped by Eve.

Stage 1: Alice chooses independently two random binary sequences of lengthN,
saya1a2 . . .aN andb1b2 . . .bN. The numberN should be a bit more than twice as long
as the length of the plaintext bitstring, as we will see. Fori = 1, . . . ,N, she prepares
a photon whose state of polarisation is given in the following diagram, depending on
(ai ,bi). (The direction of travel is perpendicular to the paper, and the angles between
adjacent lines areπ/4.)
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Note thatai determines the choice of “orthogonal” (horizontal and vertical) or
“diagonal” axes, andbi determines which of the two axes to use.

Bob chooses a random binary sequence of lengthN, sayc1c2 . . .cN (before the
photons are sent). Now, ifci = 0, he measures the polarisation of theith photon in the
vertical (or equivalently the horizontal) direction, and definesdi = 0 if he finds that the
polarisation is horizontal anddi = 1 if it is vertical. On the other hand, ifci = 1, then
he measures the polarisation of theith photon in one of the diagonal directions (again,
the two measurements are equivalent, so he can make either), and setsdi = 0 if he
finds the polarisation to be in the NW–SE direction, anddi = 1 if it is in the NE–SW
direction.

Note that

• if ai = ci , thenbi = di ;

• if ai 6= ci , thendi is random:P(di = bi) = P(di 6= bi) = 1
2. For in this case,

Bob’s measurement is at an angle ofπ/4 or 3π/4 to the actual polarisation, and
cos2θ = sin2θ = 1

2 if θ = π/4 or θ = 3π/4.
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Stage 2: Now Alice and Bob communicate in the ordinary way (over a line which
might be insecure). Alice reads out her sequencea1 . . .aN, and Bob reads out his
sequencec1 . . .cN. Since the sequences are both random, the number of places where
they agree will be a binomial random variable Bin(N, 1

2), with meanN/2 and variance
N/4 (that is, standard deviation

√
N/2); so it is very likely that the number lies in the

rangeN/2± c
√

N for some moderate constantc. In this situation, we will say “the
sequences agree at aboutN/2 places”.

Stage 3: Now Alice and Bob discard the terms of their sequencesb1 . . .bN and
d1 . . .dN apart from those where thea andc sequences agree. They use what remains
as a one-time pad. Since it is a subsequence of Alice’s original random sequence
b1 . . .bN, it is a random sequence, of length aboutN/2. By Shannon’s Theorem, their
communication will be secure.

Note that 3N random bits have to be chosen in order to produce a shared key of
length aboutN/2: this is in a sense the price paid for secrecy.

How could Eve attack this cipher?
If she uses any information she gains in stages 2 and 3, she will only be able to

obtain about half of the one-time pad, which is no better than guessing randomly. For
although she knows which subsequence of the original sequence will be used, she does
not know the contents of this subsequence, since Alice and Bob do not reveal theb
andd sequences at this stage.

What if Eve intercepts the photons? She can measure the polarisations, and then
either let these photons continue their journey to Bob, or replace them with new pho-
tons whose polarisation is hers to choose. We show that, not only Eve cannot get hold
of more than half of the key even in this way, but that Alice and Bob can detect her
tampering. I will just consider the case where she sends the photons on to Bob after
measuring the polarisations.

Eve must set up detectors according to some binary sequencee1 . . .eN, just as Bob
does. Her sequence may be random or determinate: for example, she might set them
all horizontally. But her choices will agree with Alice’s random choices about half the
time, and with Bob’s about half the time, independently. So she can only be sure of
getting aboutN/4 bits of the one-time pad.

To see how we detect tampering, note that if Eve choosesei = ai , then she does
not change the state of the photon and so her interference is undetectable. However,
if she choosesei 6= ai , and if ci = ai , then Alice and Bob have an even chance of
detecting the interference. For suppose thatai = ci = 0 andei = 1. Then Eve changes
the polarisation of the photon from orthogonal to diagonal (each of the two diagonals
having probability1

2. For each possible state, Bob has probability1
2 of measuring
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horizontal polarisation, and12 of measuring vertical polarisation. So the probability
that he measures the opposite of what Alice sent is1

2 ·
1
2 + 1

2 ·
1
2 = 1

2.
Now Alice and Bob adopt the following procedure. They choose their sequences

(ai), (bi) and(ci) of lengthN + 2n rather thanN (wheren is to be specified later).
By Stage 2, they have agreed on aboutN/2+ n positions where their sequences(bi)
and (di) will agree, if there has been no eavesdropping. Alice choosesn positions
at random from this subsequence, and reveals their contents to Bob. If there is no
eavesdropping, then Bob will have exactly the same bits in these positions as Alice.
However, if Eve has been at work, the probability that Bob’s bit disagrees with Alice’s
in one of these positions is14 (since this requires thatei 6= ai and that the randomness
in quantum theory produces a result different from what was sent, each of which in-
dependently has probability12). So the probability that Alice and Bob are in complete
agreement on the bits Alice reads out is only(3/4)n.

This probability can be made arbitrarily small by choosingn large enough. For
example, ifn = 73, then(3/4)n < 1/109, so the chance that Eve’s interference is
undetected is less than one in a billion. Increasing this ton = 241 would reduce the
chance to less than one in 1030.

How secure is such a cipher in practice? Of course, the main source of weakness
in any cipher is human error: if the cipher is incorrectly used, or the plaintext or
key is left where an unauthorised person can obtain a copy, the cipher will not be
secure. Also, the same considerations that make quantum computing error-prone also
make quantum cryptography error-prone: in practice, Bob will not receive exactly the
information that Alice sends, because random effects during transmission or small
errors in setting the polarisers or detectors will cause a small error rate. So the number
of bits that must be sacrificed in order to check for an eavesdropper will be higher
than expected, and Bob’s version of the one-time pad will not be a perfect copy of
Alice’s. In addition, it has been suggested that Eve can use technology: either firing
a powerful laser pulse down the cable to fry Bob’s detectors, or using the fact that
Alice’s transmitter may send more than one photon, so it is safe to measure one and
let the others proceed to Bob.

It is too early to say how reliable this technology will be in practice!
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