
MAS 335 Cryptography

Notes 11: Secret sharing Spring 2008

This section is primarily about secret sharing, a topic closely related to cryptogra-
phy. There are also some remarks about other topics: other cryptographic protocols,
and other types of attack on ciphers.

Secret sharing

The President of the Commercial Bank of Nod is the only person who holds a secret
password which opens the bank vault. He realises that he can’t always be around, and
sometimes it is necessary to open the vault in his absence. But he doesn’t trust any of
his employees with the password. So he wants to give each of the two Vice-Presidents
of the bank some partial information, so that only if the two of them combine their
information can they open the vault. How can he do this?

He could simply give half the password to each Vice-President. But then there
is a risk that one of the Vice-Presidents will guess the other half of the password:
this is much easier than guessing the whole password. He wants a method where the
information given to each Vice-President is no help to him in guessing the password
on his own.

This is not difficult. He can simply encrypt the password, and give one Vice-
President the ciphertext and the other the key. Together they can decrypt the password
and open the vault. But if the cipher is a secure one such as a one-time pad, one Vice-
President alone cannot break it, or even get any information about it (by Shannon’s
Theorem).

Slightly more formally, suppose that the password is a string over an alphabetA
with q symbols. LetL be aq×q Latin square whose rows and columns are labelled by
A, and whose entries are symbols fromA. Suppose thatz= z1 . . .zn is the password.
Choose any random stringa = a1 . . .an of symbols ofA, and letb = b1 . . .bn be the
string for whichai ⊕bi = zi for i = 1, . . . ,n, wheres⊕ t is the symbol in rows and
columnt of the square. (This is slightly different from the way we did it before but
the difference is immaterial.)
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As usual, we writez= a⊕b to mean coordinatewise operation, that is,zi = ai ⊕bi

for i = 1, . . . ,n.
For example, letA = {0, . . . ,q− 1} be the set of integers modq, andL is the

addition table modq (so thats⊕ t = s+ t modq).
This example can easily be extended to the case where there arek Vice-Presidents,

and it is required that only allk acting together can open the vault. Let us suppose
that the Latin square is the addition table modq. In this case, thejth Vice-President is

given the informationa( j) = a( j)
1 . . .a( j)

n , where

z= a(1)⊕a(2)⊕·· ·⊕a(k).

(For an arbitrary Latin square the method is the same, but we have to be careful about
the order we do the additions.)

Not only is it true that anyk−1 of the Vice-Presidents cannot work out the pass-
word; they cannot get any information at all about it. For example, suppose that the
first k−1 Vice-Presidents co-operate. They can calculate

b = a(1)⊕a(2)⊕·· ·⊕a(k−1).

Now
b⊕a(k) = z,

but because of the Latin square property, in each row every symbol occurs once, so
without knowledge ofa(k) all strings are equally likely!

We can extend this idea still further with a definition as follows. Letk andt be
positive integers withk > t, and letA be an alphabet ofq symbols. A(k, t) orthogonal
array overA is defined to be an arrayM with k rows andqt columns with entries from
A, having the following property:

Given anyt rows ofM, and anyt elementsa1, . . . ,at of A, there is exactly
one column ofA in which the entriesa1, . . . ,at occur (in that order) in the
t chosen rows.

The numbersk andt are called thedegreeandstrengthrespectively of the orthogonal
array. The number of columns must beqt , since this is the number of choices of a
t-tuple(a1, . . . ,at).

Recall that, for a Latin square with symbol set{1, . . . ,n}, we constructed an array
with three rows andq2 columns, where the three entries of each column give the row
number, column number, and symbol contained in a cell of the square. The defining
properties of a Latin square translate into the fact that this is an orthogonal array of
degree 3 and strength 2. (A row and column uniquely determine a symbol; a row and
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symbol uniquely determine a column; and a column and symbol uniquely determine
a row.)

A (k, t) secret sharing schemeis a scheme in which each ofk individuals is given
a member of a setS in such a way that anyt of the individuals acting together can
determine the identity of a secret members of S, but not−1 individuals can get any
information abouts.

Theorem 25 From an orthogonal array of degree k and strength t over A, we can
construct a(k−1, t) secret sharing scheme over the set An of strings of length n of
elements of A.

The construction works as follows. We can taken = 1, since to “encode” a string
we simply deal with its characters one at a time.

Suppose thatM is an orthogonal array of degreek and strengtht overA. The array
M is regarded as public.

Now M hasqt columns. Exactlyqt−1 of these have the property that the secrets
appears in the last row. Choose one of these columns at random, and give the entry in
its ith row to theith individual in the secret-sharing scheme fori = 1, . . . ,k−1.

Now by the properties of an orthogonal array, anyt of the individuals can, by
pooling their information, determine the chosen column ofM, and hence its last entry,
which is the secret. However, the information held by anyt − 1 individuals only
determines a set ofq columns, with the property that each symbol occurs in the last
row of precisely one of these columns. So the individuals concerned can obtain no
information about the secret.

Thus, a Latin square gives a(2,2) secret sharing scheme, and we have seen that
we can use it to construct a(k,k) secret sharing scheme for anyk.

There is a construction for making smaller orthogonal arrays from larger ones.
Suppose thatS is an orthogonal array of degreek and strengtht.

• Deleting any row of the array gives an orthogonal array of degreek− 1 and
strengtht, assuming thatt < k. This is clear: anyt rows of the remaining array
containt given symbols in exactly one column.

• Let a0 be a fixed symbol of the alpabet. Select those columns which havea0

in the last row (there areqt−1 of these, since each symbol occurs equally often
in the last row), and delete the remaining columns. Then delete the last row.
The resulting(k− 1)× qt−1 array is an orthogonal array of degreek− 1 and
strengtht−1. For givent−1 rows of this array, there is a unique column of the
original array which hast−1 prescribed entries in these rows anda0 in the last
row.
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These constructions only produce smaller arrays from larger ones; we need a con-
struction to give us some orthogonal arrays to start with. This a bit harder. Here is a
very nice construction due to K. A. Bush:

Theorem 26 Let q be a prime power, and t a positive integer less than q+ 1. Then
there exists an orthogonal array of degree q+ 1 and strength t over an alphabet of
size q (and hence a(q, t) secret sharing scheme over an alphabet of size q).

In this case, the alphabet is the finite field GF(q) with q elements. The array is
constructed as follows.

Consider polynomials of degreet−1. Each such polynomial has the form

f (x) = a0 +a1x+ · · ·+at−1xt−1,

wherea0,a1, . . . ,at−1 ∈ GF(q). So there areq choices for each of thet coefficients,
and henceqt polynomials.

From any polynomialf (x), we construct a column of lengthq+1 as follows. If the
elements of GF(q) are numberedu1, . . . ,uq, we put f (ui) in theith row, fori = 1, . . . ,q.
In the(q+1)st row, we put the leading coefficientat−1 of f (x).

This gives an array withq+ 1 rows andqt columns. It remains to show that it is
an orthogonal array of strengtht. Suppose we seek a column in which rowsi1, . . . , it
contain entriesz1, . . . ,zt respectively.

Suppose first that none of these rows is the(q+ 1)st. To ease notation, we put
ui j = v j for j = 1, . . . , t. Then we have to show that there is a unique polynomialf (x)
of degree at mostt−1 such that it takes prescribed values att given points, namely

f (v j) = zj , j = 1, . . . , t.

This is true in general; the method for finding the polynomial is known asLagrange
interpolation. In the case of a finite field, it can be proved by simple counting. We
give this argument, and then the general proof (which has the advantage of being
constructive).

First, we observe that there is at most one polynomial of degree≤ t − 1 taking
these values. For iff andg were two such polynomials, thenf −g would be zero at
each pointv1, . . . ,vt , contradicting the fact that a polynomial cannot have more roots
than its degree. (This part of the argument works for any field.)

Now, there areqt choices of thet valuesz1, . . . ,zt , and there areqt choices of the
coefficients of the polynomial

f (x) = a0 +a1x+ · · ·+at−1xt−1,

so each list of values must be realised by a polynomial.
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The constructive method works as follows. Let

gi(x) = ∏
j 6=i

(x−v j)
(vi −v j)

.

Then we havegi(vi) = 1, andgi(v j) = 0 for j 6= i. Hence

f (x) =
t

∑
i=1

zigi(x)

satisfiesf (vi) = zi for i = 1, . . . , t.

Now suppose that one of the rows (say the last) is the(q+1)st. Then in place of
what went before, the last equation is nowat−1 = zt . This equation determinesat−1,
and so we have to interpolate a polynomialh of degree≤ t−2 taking the othert−1
values

h(vi) = zi −at−1vt−1
i , i = 1, . . . , t−1.

By the same argument as before, there is a unique such polynomial.

The implementation of this secret-sharing scheme is remarkably simple. The Pres-
ident takes the secret password to be the coefficient ofxt−1 in the polynomial, and
chooses the coefficients of lower-degree terms at random. Then he evaluates the poly-
nomial on the elements of the field, and gives one value to each Vice-President.

Any t of the Vice-Presidents can now use Lagrange interpolation, as described
above, to find the unique polynomial of degree at mostt − 1 taking the values they
have been given. Its leading coefficient is the secret. On the other hand, fewer thant
Vice-Presidents can gain no information at all about the secret.

Example Figure 1 is the orthogonal array of degree 4 and strength 3 constructed by
the above method. The array has been transposed for convenience in printing. We take
all polynomials of degree at most 2 over GF(3) = {0,1,2}. The components of the
4-tuple aref (0), f (1), f (2), and the coefficient ofx2 in f (x)

Run your fingers down any three columns of the array on the right, and you should
find that each of the 33 = 27 possible triples occur exactly once.

Remark Bush’s orthogonal arrays are known, in different terminology, asReed-
Solomon codes, and are used for error correction in CD players.
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Polynomial 4-tuple
0 0000
1 1110
2 2220

x 0120
x + 1 1200
x + 2 2010
2x 0210
2x + 1 1020
2x + 2 2100

x2 0111
x2 + 1 1221
x2 + 2 2001
x2 + x 0201
x2 + x + 1 1011
x2 + x + 2 2121
x2 + 2x 0021
x2 + 2x + 1 1101
x2 + 2x + 2 2211
2x2 0222
2x2 + 1 1002
2x2 + 2 2112
2x2 + x 0012
2x2 + x + 1 1122
2x2 + x + 2 2202
2x2 + 2x 0102
2x2 + 2x + 1 1212
2x2 + 2x + 2 2022

Figure 1: An orthogonal array
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Other protocols

Session keys

Public-key cryptography is slower than cryptography based on a shared secret key. So
many systems, including PGP, have an initial round where a public-key cipher is used
to share a secret key between the two participants of a session. The key is used only
for that communication session.

The simplest way to do this is a modification of the Diffie–Hellman method. It has
the advantage that the key itself is not transmitted, even in enciphered form.

Alice and Bob share a prime numberp and a primitive rootg mod p. (They must
assume that Eve knowsp andg as well.) Now Alice choses a numbera in the range
{0, . . . , p−2} and Bob choosesb in the same range. Alice computesga mod p and
sends it to Bob; Bob computesgb mod p and sends it to Alice. Now each of them can
compute(ga)b = (gb)a mod p; this is the session key.

To obtain the key, Eve knowsga andgb, but needs eithera or b to proceed further;
so she needs to solve a discrete logarithm problem. Since a new key can be chosen for
each session, Eve cannot pre-compute the discrete logarithm of a public key as in the
case of El-Gamal.

Note that, as opposed to the protocol described before, this method requires only
two, rather than three, transmissions, and these are asynchronous (that is, they can
occur in either order).

And more . . .

Protocols for many other tasks have been derived. For example, Alice can send Bob a
message which he has a 50% chance of being able to decrypt, and Alice herself doesn’t
know whether or not Bob can decrypt it. Similarly, she can send him a message which
allows him to learn one or other of two secrets, so that Alice does not know which
secret Bob has learned. Bob may construct a smart card which knows his secret key,
and can prove that it knows it, but without revealing the secret key.

Fanciful as these may sound, they have been suggested to solve real practical prob-
lems. The last protocol, for example, has been proposed by Shamir as the basis for an
electronic passport.

Other kinds of attack

For the most part, we have imagined Eve as just a snooper who intercepts a message
from Alice to Bob and must be prevented from knowing its contents. There are more
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active roles that she can play. Here are a few examples. There has been a lot of
work on deciding whether the ciphers we have discussed are secure against this kind
of attack. Sometimes we must imagine that Eve is someone who works in Alice’s
or Bob’s organisation, or someone who has complete control of the communication
channel between them.

• Eve may have access to some ciphertexts from Alice to Bob together with the
corresponding plaintext. Does this help her break future messages?

• Eve may, in some circumstances, be able to persuade Alice to encipher messages
of Eve’s choosing. Carefully-chosen messages may give more information than
arbitrary messages.

• Eve may be able to impersonate Alice to a greater or lesser degree. For ex-
ample, she can certainly send Bob a message claimimg to come from Alice,
encrypted with Bob’s public key. Alice can foil this by signing or authenticating
her messages; we have seen how to do this in both RSA and El-Gamal. Even in
this case, Eve may be able to send Bob some previously-intercepted ciphertexts
instead ot the current ciphertext that Alice wants to send.

• Alice may later wish to repudiate a message she has sent to Bob, claiming that
it was a forgery from Eve. If it is signed (and the signature includes a date and
time), this should not be possible; but it seems difficult to prevent Alice from
claiming that her private key has been obtained illicitly by Eve.
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