
MAS 335 Cryptography

Notes 10: Public-key cryptography Spring 2008

In this section we look at two other schemes that have been proposed for public-
key ciphers. The first is interesting because it was the earliest such scheme to be
invented after Diffie and Hellman came up with the idea of public-key cryptography.

Neither of these schemes is used commercially as far as I know. But we will
see later a good reason why it is not wise to rely exclusively on encryption based on
number-theoretic problems.

The knapsack cipher

One of the earliest problems to be shown to beNP-complete was theknapsack prob-
lem. Unofficially, we are given a knapsack with a volume ofb units, and items of
volumea1,a2, . . . ,ak units. We want to know whether we can fill the knapsack using
some of the items.

More formally, the input data for this problem consists of the numberb and the list
(a1,a2, . . . ,ak) of numbers. Since a number between 2m and 2m+1−1 can be written
in base 2 usingm bits, we see that the size of a numbera when regarded as input data
is about log2(a), and so the size of the data for this problem is about

log2(b)+
k

∑
i=1

log2(ai).

We are asked to find ak-tuple (e1,e2, . . . ,ek), where eachei is equal to 0 or 1, such
that

k

∑
i=1

eiai = b

if possible, or discover that no such tuple exists. This problem is inNP, since we can
very easily check a purported solution by simple arithmetic. But finding a solution is
harder. In principle, we have 2k possiblek-tuples to check, and if there is no solution
we might have to look at all of them. This is not a proof that the problem is hard, since
there may be a smarter way to do it; but this problem is indeed known to be hard:

1



Theorem 13 The knapsack problem isNP-complete.

Recall that this theorem makes two assertions:

(a) The problem is inNP; that is, we cancheckwhether a proposed solution(e1,e2, . . . ,ek)
is correct in a polynomial number of steps. (The check is just integer addition!)

(b) If an algorithm tosolvethe problem in a polynomial number of steps were found,
then we would know thatP = NP (which is believed not to be the case).

For example, suppose that we are given the list

(323,412,33,389,544,297,360,486)

and a target number 1228. If we try thegreedy algorithm, which says “at each stage,
put the largest item which will fit into the knapsack”, we obtain

1228= 544+684= 544+486+198= 544+486+33+165,

and then we are stuck. So the greedy algorithm fails to solve the problem.
In the end, exhaustive search of some kind reveals that

1228= 412+33+297+486.

As can be imagined, a similar problem with 100 numbers of 50 digits each would
present quite formidable difficulty.

Now we can make a cipher based on this hard problem as follows. The public
key consists of ak-tuple(a1,a2, . . . ,ak) of integers. In order to encrypt a message, we
first write it as a string of bits, and break it into blocks of lengthk. Now the block
(e1,e2, . . . ,ek) is encrypted as the integer

a =
k

∑
i=1

eiai = b,

and this integer is transmitted.
In order to break the cipher it is necessary to solve this instance of the knapsack

problem, which is hard! Of course, we also need a secret key so that the intended
recipient can decrypt the message.

The way the key is constructed illustrates one important thing about computational
complexity, which we haven’t stressed so far. For a problem to be easy, it is necessary
that there is an algorithm which solvesany instance efficiently. It may be that some
(perhaps just a few) instances are hard; then the problem will be classified as hard,

2



even if most cases are actually easy. In other words, we are measuring ‘worst-case
complexity’ rather than ‘average-case complexity’.

Now there are indeed some instances of the knapsack problem which are easy to
solve. These correspond to the so-called super-increasing sequences.

The sequence(a1,a2, . . . ,ak) of positive integers is calledsuper-increasingif each
term is greater than the sum of its predecessors, that is, if

i−1

∑
j=1

a j < ai

for i = 1, . . . ,k. If the data in the knapsack problem is super-increasing, then the greedy
algorithm we met earlier, that is, “put into the knapsack the largest object which will
fit”, is guaranteed to solve the problem. In other words, leti be the largest index for
whichai ≤ b; then setei = 1 andej = 0 for j > i, and (recursively) solve the knapsack
problem for the integerb−ai with the sequence(a1, . . . ,ai−1). The reason for this is
that, if theith item is the largest one which fits in the knapsack, then we must use it;
the larger objects don’t fit and, even if all the smaller objects were used, they would
not fill the knapsack. (This argument shows a bit more: if a solution exists, then it is
unique.)

For example, the sequence 1,2,4,8, . . . of powers of 2 is super-increasing; the
above algorithm is exactly what we do when we express an integer in base 2. For
example,

27= 16+11= 16+8+3 = 16+8+2+1,

where we take at each step the largest power of 2 not exceeding what we have left.
We cannot just use a super-increasing sequence as public key, since Eve could

recognise that it is super-increasing and use the greedy algorithm to decrypt the cipher.
So we have to disguise it. This can be done as follows. Bob chooses a super-increasing
sequence(a1,a2, . . . ,ak). Then he chooses an integern > ∑ai and an integeru with
gcd(n,u) = 1, and builds the new sequence(a∗1,a

∗
2, . . . ,a

∗
k), where

a∗i = uai modn

for i = 1, . . . ,k. It is very unlikely that these numbers will still be super-increasing, so
Bob can use them as the public key.

Now to encipher the binary string(e1, . . . ,ek), Alice computesb∗ = ∑eia∗i , and
sends this to Bob. To decrypt this, he calculates the inversev of u mod n, using
Euclid’s Algorithm (as we have seen before). Then he calculatesb= vb∗ modn. Now
we have

b ≡ vb∗ (modn)

3



= v∑eia
∗
i

≡ v∑ei(uai) (modn)

= (uv)∑eiai

≡ ∑eiai (modn).

But bothb and∑eiai are smaller thann. (Remember that we chosen > ∑ai .) So, if
they are congruent modn, then they are actually equal:

b = ∑eiai .

So Bob has only to solve an easy instance of the knapsack problem (with super-
increasing data) in order to decrypt the message.

For example, suppose that we take the super-increasing sequence

(1,3,7,15,31,63,127,255).

Take the modulus 557, which is greater than the sum of the terms in the sequence, and
multiply by the coprime inteteger 323 to get the sequence

(323,412,33,389,544,297,360,486).

Now the bit string 01100101 (charactere in 8-bit ASCII) is encoded as 412+ 33+
297+486= 1228. To decrypt this without solving a ‘hard’ instance of the knapsack
problem, Bob knows that the inverse of 323 mod 557 is 169 (having found that 169·
323−98·557= 1); then he calculates 1228·169 mod 557, which is 328; and then he
applies the greedy algorithm to get

328= 255+73= 255+63+10= 255+63+7+3

so that the bit string is 01100101 as required.
For added security one can apply the ‘disguising’ transformation of multiplying

by u mod n several times over (with different choices ofn andu) before publishing
the key.

This was the first practical public-key cryptosystem to be proposed; it was invented
by Merkle and Hellman, soon after the basic principles of public-key cryptography
had been stated by Diffie and Hellman. It is not actually used today. The problem is
that keys obtained by disguising super-increasing sequences in this way are somehow
special, and the knapsack problem for such keys turns out to be easier than it is for
completely general instances of the knapsack problem. A polynomial time algorithm
to break this system was obtained by Shamir in 1982. (Shamir was one of the inventors
of the RSA system: so he has a vested interest in breaking any competing systems!)

4



McEliece’s cipher

(Not lectured in 2008)
Another system was proposed by McEliece, based on the theory of error-correcting

codes. This is an entirely different topic, which we summarise briefly. Consider the
following list of sixteen binary strings of length 7:

0 0 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 0 0
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

A little checking shows that any two of these 7-tuples differ in at least three positions.
This means that, if one of them is transmitted through a noisy channel which might
make a singleerror (that is, change a 0 to a 1 orvice versa), the received sequence
will still be closer to the transmitted sequence than to any other sequence in the list.

The sixteen 7-tuples have another important property. They consist of all possible
linear combinations of four of them (over the integers mod 2); that is, they form a
4-dimensional subspace of the 7-dimensional vector space over GF(2), the field of
integers mod 2. We can take a basis as the rows of the matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

This provides a very simple way to encode information. If the message to be transmit-
ted is the binary 4-tuplee= (e1,e2,e3,e4), then we encode it as the 7-tuple

eG= e1a1 +e2a2 +e3a3 +e4a4

5



using matrix multiplication over GF(2) (wherea1, . . . ,a4 are the rows ofG).
Decoding is more difficult, since (assuming that an error might have occurred) we

have in principle to compare the received word to all 16 codewords to see which is
nearest.

We can generalise all this. IfG is ak×n matrix over GF(2) with rankk, then we
can encode a binaryk-tuple e into ann-tuple eG by matrix multiplication, which is
easy. If some errors occur (in a pattern which the code can correct), then to decode
we must find the particular one of the 2k codewords which is nearest to the received
word. This looks hard; and indeed it has been shown that the problem of decoding an
arbitrary linear code isNP-complete.

However, there are some codes with particular algebraic structure for which ef-
ficient decoding algorithms exist. These are widely used in practice; for example,
Reed–Solomon codes in CD players, Reed–Muller and Golay codes in space probes.

Our small example gives us an indication of how there can be a ‘hard way’ and an
unexpected ‘easy way’ to decode. Suppose we are using the 16-word code of length
7 given earlier. The hard way to decode is to compare the received word with each
transmitted word to find out which is nearest. For example, if(0111001) is received
then we find that the seventh row of the table,(0011001), differs from it in the second
position, and must be the transmitted word (assuming at most one error). However, the
following syndrome decodingmethod is more straightforward. LetH be the matrix

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


If the received word isv, we calculatevH, which is a string of three bits. Regard this
string as the base 2 representation of an integerm in the range 0. . .7. If m= 0, then
the received word is correct; ifm= 1, . . . , 7, there is an error in themth position.

In our case,
(0,1,1,1,0,0,1)H = (0,1,0)

and(0,1,0) is the number 2 in base 2, so the second digit is wrong.
You might like to try to explain why this works. This material is covered in the

Coding Theory course (MAS309), or in books such as Ray Hill,A First Course in
Coding Theory.

McEliece’s idea is to use the fact that encoding is easy and decoding is difficult as
the base of a public-key cipher.

6



Suppose that Alice wants to send a message to Bob. First, Bob chooses a large
code for which an efficient decoding algorithm exists. He also chooses a random
permutation and applies it to the columns of the matrixG. The resulting matrixG∗ is
the public key.

If Alice wants to send the binaryk-tuple e to Bob, she first calculateseG∗, and
then randomly changes a few of the entries (this corresponds to making some random
errors). This is transmitted to Bob.

By applying the inverse of his permutation to the cipher, Bob obtains a word en-
coded usingG, which he can decode efficiently (correcting the errors at the same
time!) using the decoding algorithm forG.

However, Eve is faced with decoding a word encoded withG∗, which looks like
an ‘arbitrary’ linear code. Without the benefit of the algebraic structure, it is hard to
decode.

In terms of the last section of the notes, the encryption function is just matrix
multiplicatione 7→ eG. Decryption consists of error-correction followed by recovering
e from eG. The functiong from secret key to public key is applying a permutation to
the columns ofG; the inverse function involves finding a permutation which converts
the ‘unknown’ code into one for which an efficient decoding algorithm is known.

Any public-key cipher can be attacked in two ways: either try to decrypt directly,
or try to reconstruct the private key from the public key. In the case of McEliece’s
cipher, the latter attack is more likely. We may be able to use the structure of the code
in some way.

In our example, some sets of four columns are linearly independent and some are
linearly dependent. If we take the set of triples of columns whose complements are
linearly dependent, we get a recognisable picture which gives the structure of the code:

u u u
u uu

u

"
"

"
"

""

�
�
�
�
�
��

b
b

b
b

bb

T
T

T
T

T
TT

&%
'$

2 6 4

3

1

5
7

Even if the code is presented in arbitrary order, we can build a similar picture and
map it onto this one; this will tell us how to rearrange the columns into an order for
which our syndrome decoding algorithm will work.

7


