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Question 1 (a) Explain the terms plaintext, key and ciphertext, as used in sym-
metric cryptosystems. Illustrate these terms by means of an example. [5]

(b) The following English text has been encrypted with a Caesar shift.

LEWSHPU AOL ALYT ZALNHUVNYHWOF.

Decrypt it, and answer the question. [5]

(c) Define the Vigenère cryptosystem for an alphabet A = {a0, . . . ,an−1}, or
equivalently on Zn = Z/(n). [5]

(d) Decipher VVLW KGUE VVHV GOVC, which has been encrypted using a Vi-
genère cipher on the English alphabet with keyword CODE. [4]

(e) Explain briefly how to break a Vigenère cipher, including a method to try to
guess the length of the keyword of the cipher. [6]

Question 2 Let A be the alphabet {a0, . . . ,an−1}, where we may identify ai with
i ∈ Zn, and let C be a cipher defined over A .

(a) Explain what it means for C to be a substitution cipher and an affine substitu-
tion cipher. [4]

(b) Decrypt the following:

RNMZ MWIC SYGC PYAR RNMZ MUCX XMDM JM,

which is English text that has been encrypted using an affine substitution ci-
pher. Briefly justify your answer. [7]

(c) Why is it important that a cipher has a large number of potential keys? [2]

(d) How many essentially distinct keys are there in the following cases:

(i) A substitution cipher over an alphabet with 47 letters.

(ii) An affine substitution cipher over an alphabet of size n.

(iii) A Vigenère cipher with a key of length 50 over an alphabet of size 31.

(iv) An affine substitution cipher followed by a Caesar shift, both over the
same alphabet of size 33.

[You should simplify your answer as far as possible, but it may still contain
expressions like 236×41!. Numerical answers less than 108 should be evalu-
ated explicitly.] [12]
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Question 3 (a) Define an n-bit shift register, and explain what it means to say it
is primitive, and give the Z2-polynomial corresponding to such a shift register. [7]

(b) You intercept the following bit string:

10111 11001 01001 10001 10101 01010 11100 11010 01010.

You have reason to believe that the message was converted into a bit string
using the International Teleprinter Code, and then encrypted using a keystring
derived from a 5-bit shift register. You have reason to believe that the message
commences MI. Decrypt the message.

[The International Teleprinter Code is given at the end of the paper.] [11]

(c) Is the shift register of the previous part primitive? Justify your answer. [2]

(d) Let f be the polynomial corresponding to that shift register. Is f irreducible?
Justify your answer. [3]

(e) Is the above keystring suitable for use as a one-time-pad? Very briefly explain
your answer. [2]

Question 4 (a) Define Euler’s function φ(n) and Carmichael’s function λ (n),
and calculate λ (12) from first principles. [5]

(b) Let M ∈ Z be such that xM ≡ 1 (mod n) whenever gcd(x,n) = 1 (for example
M = φ(n)). Prove that λ (n) |M. [3]

(c) Let p and q be distinct primes. Write down the values of φ(pq) and λ (pq).
Prove that λ (mn) = lcm(λ (m),λ (n)) whenever m and n are coprime. [5]

(d) Let n = pq, where p and q are primes with 2 < p < q. Explain how to use
knowledge of λ (n) to obtain p and q. Illustrate your method when n = 1961,
given that λ (n) = 468 (and n is the product of two distinct odd primes).
[You will gain no marks if you factor 1961 by trial division.] [6]

(e) Bob’s RSA private key consists of primes p and q and exponents d and e, and
his public key consists pq and e. What is the encryption y of the plaintext x
for sending to Bob, and how does Bob recover x from y? Explain how Bob
chooses e given p and q, and how he calculates d given p, q and e. [6]
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Question 5 (a) What is a Latin square? Complete the following to a 5×5 Latin
square, for which most of the first two rows has been given.

C E B A D
A B E

[There several solutions; any solution will do.] [5]

(b) What is a one-time-pad? [4]

(c) State Shannon’s Theorem. [4]

(d) A message in the 4-letter alphabet {0,1,2,3} has been encrypted using a ran-
dom keystring, with the keys uniformly distributed, and substitution table:

0 1 2 3
0 0 2 1 3
1 2 3 2 2
2 3 0 0 0
3 1 1 3 1

The message has length 3. Before intercepting the ciphertext your estimates
of the probabilities of the plaintext strings are

P(p = 023) = 1
3 , P(p = 200) = 2

3 ,

with the other probabilities being 0. Calculate the probability P(z = 301)
given the above. You intercept the ciphertext z = 301. Calculate the con-
ditional probability P(p = 023 | z = 301) given this information. Does your
answer contradict Shannon’s Theorem? [12]

Question 6 (a) Let p be a prime, and let x be an integer such that p - x. Define
the (multiplicative) order of x modulo p. [3]

(b) What is a primitive root modulo p? (This is the same as a primitive element
of Zp.) [3]

(c) What are the orders of 2 and 3 modulo 41? Justify your answers. [5]

(d) Are either of these primitive? If not, find a primitive element modulo 41. [4]

(e) Explain carefully the operation of the El-Gamal cipher. On what hard prob-
lem does its security depend? [10]
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A 11000
B 10011
C 01110
D 10010
E 10000
F 10110
G 01011
H 00101
I 01100
J 11010

K 11110
L 01001

M 00111
N 00110
O 00011
P 01101
Q 11101
R 01010
S 10100
T 00001
U 11100
V 01111
W 11001
X 10111
Y 10101
Z 10001

Letters 11111
Figures 11011

Line feed 01000
Carriage return 00010

Word space 00100
All space 00000

Table 1: International Teleprinter Code

End of Paper
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