University of London

B. Sc. Examination 2006

MAS 335 Cryptography

Duration: 2 hours

Date and time: 8 May 2006, 10:00-12:00

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best 5 questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Question 1 (20 marks)
(a) What is an affine permutation of $\mathbb{Z} /(n)$? Prove that there are exactly $n \phi(n)$ affine permutations of $\mathbb{Z} /(n)$, where ϕ is Euler's function.
(b) Decrypt the following, which has been encrypted with an affine substitution cipher:

JKTW TRQH NXOS TRTV DIJL TDQC UHUD GTJQ OGHF UIT
(c) Why would it be better to use a random permutation instead of an affine permutation to encrypt a message?
(d) Alice wants to encrypt a message using a substitution cipher, and thinks that she will make the cipher more secure by making sure that no letter is encrypted as itself. Is she right? Why?

Question 2 (20 marks)
(a) Explain the difference between coding theory and cryptography. Are there any practical circumstances in which you might want to use both at once?
(b) Encrypt the message 'this exam is too easy' with a Vigenère cipher, with the key 'hard'.
(c) Is there any point in encrypting a message with a Vigenère cipher, and then encrypting the ciphertext again with another Vigenère cipher? Explain.
(d) Explain briefly how you would break a Vigenère cipher, including how to find the length of the key.
(e) Explain briefly how frequency analysis can be used to break a substitution cipher.

Question 3 (20 marks)
(a) Define the term Latin square over an alphabet A. Explain how a Latin square can be used in conjunction with a random string over A to create a stream cipher.
(b) State Shannon's Theorem for such a stream cipher.
(c) Describe an n-bit binary shift register and explain how it can be used to produce a pseudo-random binary sequence.
(d) Explain how to reconstruct the shift register, and hence the complete binary sequence, from any $2 n$ consecutive bits of the sequence. Why does this make a shift register unsuitable as a replacement for a one-time pad?

Question 4 (20 marks)
(a) Define Euler's phi-function $\phi(n)$, and show that if p is prime then $\phi\left(p^{a}\right)=$ $p^{a-1}(p-1)$. State without proof a general formula for $\phi(n)$. Prove that if $\operatorname{gcd}(x, n)=1$ then $x^{\phi(n)} \equiv 1 \bmod n$. Where does your proof break down if $\operatorname{gcd}(x, n) \neq 1$?
(b) Explain briefly the operation of the RSA cryptosystem.
(c) Show how RSA with modulus N can be broken if $\phi(N)$ is known. Illustrate by factorising 9167, given that it is a product of two primes and $\phi(9167)=8976$. (The marks are for the method, not the factorisation.)

Question 5 (20 marks)
(a) Explain the terms plaintext, ciphertext, and key, and illustrate them with an example.
(b) Why is it important for a cipher to have a large number of potential keys?
(c) Explain the concept of a digital signature. Give an instance of a situation in which it might be used in practice. Describe in detail an implementation of digital signatures, using a public-key cryptosystem of your choice.
(d) Show how to compute $x^{a}(\bmod b)$ with at $\operatorname{most} 2 \log _{2} a$ multiplications and reductions modulo b. Illustrate by calculating $2^{101}(\bmod 85)$ without a calculator. (Show your working.)

Question 6 (20 marks)
(a) Explain Diffie-Hellman key exchange. On what hard problem does its security depend?
(b) What is the knapsack problem? Explain the Merkle-Hellman public-key cryptosystem based on this problem.

