B. Sc. Examination 2005

MAS 335 Cryptography

Duration: 2 hours

Date and time: 6 May 2005, 10:00-12:00

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best 5 questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Question 1 (20 marks)

- (a) Explain the difference between cryptography, steganography, and cryptanalysis. [3]
- (b) Explain the terms *plaintext*, *ciphertext*, and *key*, and illustrate them in an example. [5]
- (c) Decrypt the following, which has been encrypted with a Caesar cipher: [7]

YFND LTYN FFUN FLCU RNFF UTYL TBTY LTBZ WRNF FUTY LTBT FLCU TYLT BNFF U

(d) Why is it important for a cipher to have a large number of potential keys? [5]

Question 2 (20 marks) Explain how the RSA public-key cryptosystem works. Your explanation should include a discussion of which problems are 'easy' and which are 'hard', and why, and the significance of this for security and for practical implementations.

Question 3 (20 marks)

(a)	Explain how a substitution cipher works.	[3]
(b)	Illustrate by encrypting the text	
	Eve has found the key	
	with the substitution	
	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z T H E Q U I C K B R O W N F X J M P S V L A Z Y D G	F 2 3
		[3]
(c)	Explain briefly how a substitution cipher can be broken.	[4]
(d)	Alice and Bob wish to use the same substitution for both encryption and decryption. What property must the substitution have, considered as a permutation of the alphabet?	
	How many such substitutions are there of a 26-letter alphabet, assuming no letter is encrypted as itself? [You may leave your answer in factorised form, rather than multiplying it out.]	[6]
(e)	If Eve knows that the same substitution is used for both encryption and decryption, does it make her job of breaking the cipher any easier? Why?	[4]
Ques	tion 4 (20 marks)	
(a)	Define the term <i>Latin square</i> over an alphabet <i>A</i> .	[2]
(b)	Prove that $n \times n$ Latin squares exist for every positive integer n .	[5]
(c)	Explain how a Latin square can be used in conjunction with a random string over A to create a stream cipher.	[4]
(d)	State precisely Shannon's theorem for such a cipher.	[3]
(e)	What two main problems can occur if the substitution table for a stream cipher is not a Latin square? (Give details.)	[6]

Question 5 (20 marks)

(a)	What is an <i>n</i> -bit binary shift register? Explain briefly how it may be described by a polynomial with coefficients in $\mathbb{Z}/(2)$.	[4]	
(b)	Draw a diagram of the binary shift register corresponding to the polynomial $x^5 + x + 1$.	[3]	
(c)	Calculate the next 5 bits of the sequence produced by this shift register following 01011.	[3]	
(d)	Define the terms <i>irreducible</i> and <i>primitive</i> as applied to polynomials (or shift registers).	[4]	
(e)	Determine (with proof) whether $x^5 + x + 1$ is (i) irreducible, (ii) primitive.	[6]	
Question 6 (20 marks)			
(a)	If p is a prime, what is a primitive root modulo p ? Find a primitive root modulo 17.	[4]	
(b)	Explain the discrete logarithm problem, and why it is thought to be hard.	[5]	
(c)	Explain carefully the operation of the El-Gamal public-key cryptosystem.	[8]	
(d)	Why is it important for the random exponent (or key) chosen by Alice to be truly random?	[3]	