MAS400: Solutions 8

All questions have the following. Let v_1, \ldots, v_n be linearly independent vectors in \mathbb{R}^n , such that (v_1, \ldots, v_n) has Gram–Schmidt orthogonalisations $((v_1^*, \ldots, v_n^*), (\mu_{st}))$. Determine the Gram–Schmidt orthogonalisations $((w_1^*, \ldots, w_n^*), (\xi_{st}))$ of (w_1, \ldots, w_n) in the following cases. Throughout, I shall assume well-known properties of the GSO such as $\langle v_1^*, \ldots, v_k^* \rangle_{\mathbb{R}} = \langle v_1, \ldots, v_k \rangle_{\mathbb{R}}$ for all k, and that v_k^* is the (orthogonal) projection of v_k onto $\langle v_1, \ldots, v_{k-1} \rangle_{\mathbb{R}}^{\perp}$ for all k.

Throughout, let $V_k = \langle v_1, \ldots, v_k \rangle = \langle v_1^*, \ldots, v_k^* \rangle$ and $W_k = \langle w_1, \ldots, w_k \rangle$, for all k with $0 \leq k \leq n$.

1. Case $w_i = \lambda v_i$, $w_j = v_j$ if $j \neq i$, where $\lambda \neq 0$ ($\lambda \in \mathbb{R}$).

In this case $V_k = W_k$ for all k, including the case k = i. Since $w_k = v_k$ if $k \neq i$ then clearly $w_k^* = v_k^*$ for such k. Now w_i^* is the orthogonal projection of $w_i = \lambda v_i$ onto $W_{i-1}^{\perp} = V_{i-1}^{\perp}$, and so $w_i^* = \lambda v_i^*$. This deals with the GSO basis. The only pairs (s, t) where ξ_{st} might differ from μ_{st} are those for which s > t and where $w_s \neq v_s$ or $w_t^* \neq v_t^*$. Thus $\xi_{st} = \mu_{st}$ unless i = s > t or s > t = i. In the case i = s > t we have $\xi_{st} = \xi_{it} = \frac{w_i \cdot w_t^*}{w_t^* \cdot w_t^*} = \frac{\lambda v_i \cdot v_t^*}{v_t^* \cdot v_t^*} = \lambda \mu_{it} = \lambda \mu_{st}$. In the case s > t = iwe have $\xi_{st} = \xi_{si} = \frac{w_s \cdot w_i^*}{w_t^* \cdot w_i^*} = \frac{v_s \cdot (\lambda v_i^*)}{(\lambda v_i^*) \cdot (\lambda v_i^*)} = \frac{\lambda}{\lambda} \frac{v_s \cdot v_i^*}{v_t^* \cdot v_i^*} = (\frac{\lambda}{\lambda}) \mu_{st}$.

2. Case $w_i = v_i - \lambda v_k$ with k < i, $w_j = v_j$ if $j \neq i$.

But for all k < i we have $w_k = v_k$ and thus $W_k = V_k$ for all k < i. Now $v_i - w_i = \lambda v_j \in V_j \subseteq V_{i-1}$, and so $W_i = V_i$ too. Since $w_k = v_k$ for k > i we conclude that $W_k = V_k$ for all k. Firstly, let us consider the GSO bases. For all k, v_k^* is the projection of v_k onto $V_{k-1}^{\perp} \cap V_k$. Also w_k^* is the projection of w_k onto $W_{k-1}^{\perp} \cap W_k = V_{k-1}^{\perp} \cap V_k$, and since $w_k - v_k \in V_{k-1}$ for all k we get that $w_k^* = v_k^*$ for all k. If k < l then $\xi_{kl} = \mu_{kl} = 0$ and if k = l then $\xi_{kl} = \mu_{kl} = 1$. In the main case when k > l we have $\xi_{kl} = \frac{w_k \cdot w_l^*}{w_l^* \cdot w_l^*} = \frac{w_k \cdot v_l^*}{v_l^* \cdot v_l^*}$. So if $k \neq i$ we have $w_k = v_k$ and thus $\xi_{kl} = \mu_{kl}$. If k = i then $w_k = w_i = v_i - \lambda v_j$. Therefore we have $\xi_{il} = \frac{w_i \cdot v_i}{v_l^* \cdot v_l^*} = \frac{v_i \cdot v_l^*}{v_l^* \cdot v_l^*} - \lambda \frac{v_j \cdot v_l^*}{v_l^* v_l^*} = \mu_{il} - \lambda \frac{v_j \cdot v_l^*}{v_l^* v_l^*}$, which is perpendicular to v_l^* . Also $(v_k - v_k^*) \in V_{k-1}$, which is perpendicular to v_l^* . Also $(v_k - v_k^*) \in V_{k-1}$, which is perpendicular to v_l^* and so $v_k \cdot v_k^* = v_k^* \cdot v_k^*$ for all k. Thus $\xi_{ij} = \mu_{ij} - \lambda = \mu_{ij} - \lambda \mu_{jj}$ and $\xi_{il} = \mu_{il} = \mu_{il} - \lambda \mu_{jl}$ if j < l < i. 3. Case $w_i = v_{i+1}, w_{i+1} = v_i, w_j = v_j$ if $j \neq i, i+1$.

Firstly, let us consider the GSO bases. For all k, v_k^* is the projection of v_k onto $V_{k-1}^{\perp} \cap V_k$. If $k \neq i, i+1$ then $W_{k-1} = V_{k-1}$ and $W_k = V_k$ and so $w_k^* = v_k^*$ for all such k. Similarly $V_{i-1} = W_{i-1}$ and $V_{i+1} = W_{i+1}$ and so $U := \langle v_i^*, v_{i+1}^* \rangle = \langle w_i^*, w_{i+1}^* \rangle$. Now V_{i+1} is the direct sum of U and V_{i-1} . Thus considering the U-components of $v_i = w_{i+1}$ and $v_{i+1} = w_i$ gives the equations:

$$w_{i+1}^* + \xi_{i+1,i} w_i^* = v_i^*, w_i^* = v_{i+1}^* + \mu_{i+1,i} v_i^*$$

Therefore, $w_{i+1}^* = v_i^* - \xi_{i+1,i} w_i^* = -\xi_{i+1,i} v_{i+1}^* + (1 - \xi_{i+1,i} \mu_{i+1,i}) v_i^*$. The inner product $0 = w_{i+1}^* \cdot w_i^*$ gives the equation:

$$\xi_{i+1,i}(v_{i+1}^* \cdot v_{i+1}^* + \mu_{i+1,i}\bar{\mu}_{i+1,i}v_i^* \cdot v_i^*) = \bar{\mu}_{i+1,i}(v_i^* \cdot v_i^*),$$

which allows one to determine $\xi_{i+1,i}$ in terms of the μ s and v^*s . (Note that $v_{i+1}^* \cdot v_{i+1}^* + \mu_{i+1,i} \bar{\mu}_{i+1,i} v_i^* \cdot v_i^*$ is in fact $w_i^* \cdot w_i^*$, and is thus nonzero.) Thus w_{i+1}^* can be written in terms of the μ s and v^*s .

Now we consider (most of) the ξ_{kl} . If k = l then $\xi_{kl} = \mu_{kl} = 1$ and if k < l then $\xi_{kl} = \mu_{kl} = 0$. Also if $k, l \notin \{i, i+1\}$ then the relevant vs and ws are equal and so $\xi_{kl} = \mu_{kl}$ in these cases too. If $k \leq i-1$ then $\xi_{i,k} = \frac{w_i \cdot w_k^*}{w_k^* \cdot w_k^*} = \frac{v_{i+1} \cdot v_k^*}{v_k^* \cdot v_k^*} = \mu_{i+1,k}$ and $\xi_{i+1,k} = \frac{w_{i+1} \cdot w_k^*}{w_k^* \cdot w_k^*} = \frac{v_i \cdot v_k^*}{v_k^* \cdot v_k^*} = \mu_{i,k}$. The remaining cases are nastier. (Recall that we have already calculated w_i^* , w_{i+1}^* and $\xi_{i+1,i}$ in terms of the μ s and v^*s .) For all k > i+1 we have:

$$(w_i^* \cdot w_i^*)\xi_{ki} = w_k \cdot w_i^* = v_k \cdot (v_{i+1}^* + \mu_{i+1,i}v_i^*)$$

= $v_k \cdot v_{i+1}^* + \bar{\mu}_{i+1,i}(v_k \cdot v_i^*)$
= $(v_{i+1}^* \cdot v_{i+1}^*)\mu_{k,i+1} + \bar{\mu}_{i+1,i}(v_i^* \cdot v_i^*)\mu_{ki},$

along with:

$$\begin{aligned} (w_{i+1}^* \cdot w_{i+1}^*) \xi_{k,i+1} &= w_k \cdot w_{i+1}^* = v_k \cdot (-\xi_{i+1,i} v_{i+1}^* + (1 - \xi_{i+1,i} \mu_{i+1,i}) v_i^*) \\ &= -\bar{\xi}_{i+1,i} (v_k \cdot v_{i+1}^*) + (1 - \bar{\xi}_{i+1,i} \bar{\mu}_{i+1,i}) (v_k \cdot v_i^*) \\ &= -\bar{\xi}_{i+1,i} (v_{i+1}^* \cdot v_{i+1}^*) \mu_{k,i+1} + (1 - \bar{\xi}_{i+1,i} \bar{\mu}_{i+1,i}) (v_i^* \cdot v_i^*) \mu_{ki} \end{aligned}$$

We have already calculated that $\xi_{i+1,i} = \bar{\mu}_{i+1,i} \frac{v_i^* \cdot v_i^*}{w_i^* \cdot w_i^*}$ above.

I give only partial answers to the remaining questions, which (try to) detail what happens to the GSO when the remaining elementary row operations are applied to a basis. The ones relevant for BasisReduction are in Questions 2 and 3. In both the remaining cases, one is usually better off calculating the new GSO from scratch.

- 4. Case $w_i = v_i \lambda v_k$ with k > i, $w_j = v_j$ if $j \neq i$. (This should be contrasted with the answer to Question 2.)
- 5. Case $w_i = v_k$, $w_k = v_i$ (wlog i < k), $w_j = v_j$ if $j \neq i, k$. Given the complications in the answer to Question 3, you can imagine how much worse the general case is. Clearly $W_j = V_j$ if j < i or $j \ge k$. Thus $w_j^* = v_j^*$ if j < i or j > k. Therefore $\xi_{jl} = \mu_{jl}$ whenever $j \le l$ or $(l < i \text{ and } j \notin \{i, k\})$ or j, l > k. The rest is harder. We have that w_i^* is the projection of v_k^* onto V_{i-1}^{\perp} , and so we get

$$w_i^* = v_k + \sum_{j=i}^{k-1} \mu_{kj} v_j^*.$$

(Recall that $w_i = v_k = v_k^* + \sum_{j=1}^{k-1} \mu_{kj} v_j^*$.) For i < j < k we get

$$w_j = v_j = v_j^* + \sum_{l=1}^{j-1} \mu_{jl} v_l^*$$