
MAS400: Solutions 8

All questions have the following. Let v1, . . . , vn be linearly indepen-
dent vectors in Rn, such that (v1, . . . , vn) has Gram–Schmidt orthogonali-
sation ((v∗1, . . . , v

∗
n), (µst)). Determine the Gram–Schmidt orthogonalisations

((w∗
1, . . . , w

∗
n), (ξst)) of (w1, . . . , wn) in the following cases. Throughout, I

shall assume well-known properties of the GSO such as 〈v∗1, . . . , v∗k〉R =
〈v1, . . . , vk〉R for all k, and that v∗k is the (orthogonal) projection of vk onto
〈v1, . . . , vk−1〉⊥R for all k.

Throughout, let Vk = 〈v1, . . . , vk〉 = 〈v∗1, . . . , v∗k〉 and Wk = 〈w1, . . . , wk〉,
for all k with 0 6 k 6 n.

1. Case wi = λvi, wj = vj if j 6= i, where λ 6= 0 (λ ∈ R).

In this case Vk = Wk for all k, including the case k = i. Since wk = vk

if k 6= i then clearly w∗
k = v∗k for such k. Now w∗

i is the orthogonal
projection of wi = λvi onto W⊥

i−1 = V ⊥
i−1, and so w∗

i = λv∗i . This deals
with the GSO basis. The only pairs (s, t) where ξst might differ from
µst are those for which s > t and where ws 6= vs or w∗

t 6= v∗t . Thus
ξst = µst unless i = s > t or s > t = i. In the case i = s > t we have
ξst = ξit =

wi·w∗
t

w∗
t ·w∗

t
=

(λvi)·v∗t
v∗t ·v∗t

= λ
vi·v∗t
v∗t ·v∗t

= λµit = λµst. In the case s > t = i

we have ξst = ξsi =
ws·w∗

i

w∗
i ·w∗

i
=

vs·(λv∗i )

(λv∗i )·(λv∗i )
= 1

λ

vs·v∗i
v∗i ·v∗i

= ( 1
λ
)µsi = ( 1

λ
)µst.

2. Case wi = vi − λvk with k < i, wj = vj if j 6= i.

But for all k < i we have wk = vk and thus Wk = Vk for all k < i.
Now vi − wi = λvj ∈ Vj ⊆ Vi−1, and so Wi = Vi too. Since wk = vk

for k > i we conclude that Wk = Vk for all k. Firstly, let us consider
the GSO bases. For all k, v∗k is the projection of vk onto V ⊥

k−1 ∩ Vk.
Also w∗

k is the projection of wk onto W⊥
k−1 ∩Wk = V ⊥

k−1 ∩ Vk, and since
wk − vk ∈ Vk−1 for all k we get that w∗

k = v∗k for all k. If k < l then
ξkl = µkl = 0 and if k = l then ξkl = µkl = 1. In the main case when
k > l we have ξkl =

wk·w∗
l

w∗
l ·w

∗
l

=
wk·v∗l
v∗l ·v

∗
l
. So if k 6= i we have wk = vk

and thus ξkl = µkl. If k = i then wk = wi = vi − λvj. Therefore we

have ξil =
wi·v∗l
v∗l ·v

∗
l

=
(vi−λvj)·v∗l

v∗l ·v
∗
l

=
vi·v∗l
v∗l ·v

∗
l
− λ

vj ·v∗l
v∗l ·v

∗
l

= µil − λ
vj ·v∗l
v∗l ·v

∗
l
, which is

µil − λµjl if l < j. Note that vk · v∗l = 0 if k < l as vk ∈ Vl−1, which is
perpendicular to v∗l . Also (vk − v∗k) ∈ Vk−1, which is perpendicular to
v∗k, and so vk · v∗k = v∗k · v∗k for all k. Thus ξij = µij −λ = µij −λµjj and
ξil = µil = µil − λµjl if j < l < i. Therefore ξil = µil − λµjl whenever
l < i.
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3. Case wi = vi+1, wi+1 = vi, wj = vj if j 6= i, i + 1.

Firstly, let us consider the GSO bases. For all k, v∗k is the projection of
vk onto V ⊥

k−1 ∩ Vk. If k 6= i, i + 1 then Wk−1 = Vk−1 and Wk = Vk and
so w∗

k = v∗k for all such k. Similarly Vi−1 = Wi−1 and Vi+1 = Wi+1 and
so U := 〈v∗i , v∗i+1〉 = 〈w∗

i , w
∗
i+1〉. Now Vi+1 is the direct sum of U and

Vi−1. Thus considering the U -components of vi = wi+1 and vi+1 = wi

gives the equations:

w∗
i+1 + ξi+1,iw

∗
i = v∗i ,

w∗
i = v∗i+1 + µi+1,iv

∗
i .

Therefore, w∗
i+1 = v∗i − ξi+1,iw

∗
i = −ξi+1,iv

∗
i+1 + (1− ξi+1,iµi+1,i)v

∗
i . The

inner product 0 = w∗
i+1 · w∗

i gives the equation:

ξi+1,i(v
∗
i+1 · v∗i+1 + µi+1,iµ̄i+1,iv

∗
i · v∗i ) = µ̄i+1,i(v

∗
i · v∗i ),

which allows one to determine ξi+1,i in terms of the µs and v∗s. (Note
that v∗i+1 ·v∗i+1 +µi+1,iµ̄i+1,iv

∗
i ·v∗i is in fact w∗

i ·w∗
i , and is thus nonzero.)

Thus w∗
i+1 can be written in terms of the µs and v∗s.

Now we consider (most of) the ξkl. If k = l then ξkl = µkl = 1 and if
k < l then ξkl = µkl = 0. Also if k, l /∈ {i, i + 1} then the relevant vs
and ws are equal and so ξkl = µkl in these cases too. If k 6 i − 1 then
ξi,k =

wi·w∗
k

w∗
k·w

∗
k

=
vi+1·v∗k
v∗k·v

∗
k

= µi+1,k and ξi+1,k =
wi+1·w∗

k

w∗
k·w

∗
k

=
vi·v∗k
v∗k·v

∗
k

= µi,k. The

remaining cases are nastier. (Recall that we have already calculated
w∗

i , w∗
i+1 and ξi+1,i in terms of the µs and v∗s.) For all k > i + 1 we

have:

(w∗
i · w∗

i )ξki = wk · w∗
i = vk · (v∗i+1 + µi+1,iv

∗
i )

= vk · v∗i+1 + µ̄i+1,i(vk · v∗i )
= (v∗i+1 · v∗i+1)µk,i+1 + µ̄i+1,i(v

∗
i · v∗i )µki,

along with:

(w∗
i+1 · w∗

i+1)ξk,i+1 = wk · w∗
i+1 = vk · (−ξi+1,iv

∗
i+1 + (1 − ξi+1,iµi+1,i)v

∗
i )

= −ξ̄i+1,i(vk · v∗i+1) + (1 − ξ̄i+1,iµ̄i+1,i)(vk · v∗i )
= −ξ̄i+1,i(v

∗
i+1 · v∗i+1)µk,i+1 + (1 − ξ̄i+1,iµ̄i+1,i)(v

∗
i · v∗i )µki.

We have already calculated that ξi+1,i = µ̄i+1,i
v∗i ·v∗i
w∗

i ·w∗
i

above.
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I give only partial answers to the remaining questions, which (try to)
detail what happens to the GSO when the remaining elementary row oper-
ations are applied to a basis. The ones relevant for BasisReduction are in
Questions 2 and 3. In both the remaining cases, one is usually better off
calculating the new GSO from scratch.

4. Case wi = vi − λvk with k > i, wj = vj if j 6= i.

(This should be contrasted with the answer to Question 2.)

5. Case wi = vk, wk = vi (wlog i < k), wj = vj if j 6= i, k.

Given the complications in the answer to Question 3, you can imagine
how much worse the general case is. Clearly Wj = Vj if j < i or j > k.
Thus w∗

j = v∗j if j < i or j > k. Therefore ξjl = µjl whenever j 6 l or
(l < i and j /∈ {i, k}) or j, l > k. The rest is harder. We have that w∗

i

is the projection of v∗k onto V ⊥
i−1, and so we get

w∗
i = vk +

k−1∑
j=i

µkjv
∗
j .

(Recall that wi = vk = v∗k +
∑k−1

j=1 µkjv
∗
j .) For i < j < k we get

wj = vj = v∗j +

j−1∑
l=1

µjlv
∗
l
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