MAS400: Solutions 7

- 1. Calculate the Gram–Schmidt orthogonalisations of the following.
 - (a) $\{(1,1,1), (1,2,3), (1,4,9)\}.$
 - (b) $\{(1,2,0), (0,1,2), (2,0,1)\}.$
 - (a) $v_1^* := v_1 = (1, 1, 1);$ $v_2^* := v_2 - \frac{v_2 \cdot v_1^*}{v_1^* \cdot v_1^*} v_1^* = (1, 2, 3) - \frac{6}{3}(1, 1, 1) = (-1, 0, 1);$ $v_3^* := v_3 - \frac{v_3 \cdot v_2^*}{v_2^* \cdot v_2^*} v_2^* - \frac{v_3 \cdot v_1^*}{v_1^* \cdot v_1^*} v_1^* = (1, 4, 9) - \frac{8}{2}(-1, 0, 1) - \frac{14}{3}(1, 1, 1) = (\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}).$
 - (b) $v_1^* := v_1 = (1, 2, 0);$ $v_2^* := v_2 - \frac{v_2 \cdot v_1^*}{v_1^* \cdot v_1^*} v_1^* = (0, 1, 2) - \frac{2}{5}(1, 2, 0) = (-\frac{2}{5}, \frac{1}{5}, 2);$ $v_3^* := v_3 - \frac{v_3 \cdot v_2^*}{v_2^* \cdot v_2^*} v_2^* - \frac{v_3 \cdot v_1^*}{v_1^* \cdot v_1^*} v_1^* = (2, 0, 1) - \frac{6/5}{21/5}(-\frac{2}{5}, \frac{1}{5}, 2) - \frac{2}{5}(1, 2, 0) = (2, 0, 1) - \frac{2}{7}(-\frac{2}{5}, \frac{1}{5}, 2) - \frac{2}{5}(1, 2, 0) = (\frac{12}{7}, -\frac{6}{7}, \frac{3}{7}).$
- 2. Calculate using BasisReduction (LLL-)reduced bases for the following lattices.
 - (a) $\Lambda_1 = \langle (3, -5), (7, -11) \rangle_{\mathbb{Z}}.$
 - (b) $\Lambda_2 = \langle (12, 2), (13, 4) \rangle_{\mathbb{Z}}.$
 - (c) $\Lambda_3 = \langle (1,1,1), (1,1,-1), (1,-1,1) \rangle_{\mathbb{Z}}.$

In the first two questions, the for-loops only operate when i = 2, and the only changes that occur then are $m := \text{Round}(\mu_{21})$; $w_2 := w_2 - mw_1$ and $\mu_{21} := \mu_{21} - m\mu_{11} = \mu_{21} - m$.

(a) We let $w_1 = (3, -5)$ and $w_2 = (7, -11)$, and the GSO is $w_1^* = (3, -5)$ and $w_2^* = (7, -11) - \frac{76}{34}(3, -5) = (\frac{5}{17}, \frac{3}{17})$ with $\mu_{21} = \frac{38}{17}$. The first trip through the for-loops gives $m := \text{Round}(\frac{38}{17}) = 2$, $w_2 = w_2 - 2w_1 = (1, -1), \ \mu_{21} = \mu_{21} - 2 = \frac{4}{17}$. Now $|w_1^*|^2 = 34 > 2|w_2^*|^2 = 2(\frac{34}{17^2}) = \frac{4}{17}$.

Thus the if-loop gives $w_1 = (1, -1), w_2 = (3, -5), w_1^* = (1, -1), w_2^* = (3, -5) - \frac{8}{2}(1, -1) = (-1, -1), \mu_{21} = 4, \text{ and } i = 1$. When i = 1 the for-loops do nothing, and the if-loop increments i to 2. Now we get $m := \text{Round}(4) = 4, w_2 = w_2 - 4w_1 = (-1, -1), \mu_{21} = \mu_{21} - 4 = 0$. Now $|w_1^*|^2 = 2 \leq 2|w_2^*|^2 = 4$. Therefore we are done and the reduced basis is ((1, -1), (-1, -1)).

(b) We let $w_1 = (12, 2)$ and $w_2 = (13, 4)$, and the GSO is $w_1^* = (12, 2)$ and $w_2^* = (13, 4) - \frac{164}{185}(12, 2) = (\frac{437}{185}, \frac{412}{185})$ with $\mu_{21} = \frac{164}{185}$. The first trip through the for-loops gives $m := \text{Round}(\frac{164}{185}) = 1$, $w_2 = w_2 - w_1 = (1, 2)$, $\mu_{21} = \mu_{21} - 1 = -\frac{21}{185}$. Now $|w_1^*|^2 = 148 > 18 > 2|w_2^*|^2$ (since $|\frac{437}{185}|, |\frac{412}{185}| < 3$). Thus the if-loop gives $w_1 = (1, 2)$, $w_2 = (12, 2)$, $w_1^* = (1, 2)$, $w_2^* = (12, 2) - \frac{16}{5}(1, 2) = (\frac{44}{5}, \frac{-22}{5})$, $\mu_{21} = \frac{16}{5}$, and i = 1. When i = 1 the for-loops do nothing, and the if-loop increments i to

i = 1 the for-loops do nothing, and the if-loop increments i to 2. Now we get $m := \text{Round}(\frac{16}{5}) = 3$, $w_2 = w_2 - 3w_1 = (9, -4)$, $\mu_{21} = \mu_{21} - 3 = \frac{1}{5}$. Now $|w_1^*|^2 = 5 \leq 2|w_2^*|^2 = 2(\frac{484}{5})$. Therefore we are done and the reduced basis is ((1, 2), (9, -4)).

(c) We let $w_1 = (1, 1, 1), w_2 = (1, 1, -1), w_3 = (1, -1, 1)$. The GSO is $w_1^* = (1, 1, 1), w_2^* = (1, 1, -1) - \frac{1}{3}(1, 1, 1) = (\frac{2}{3}, \frac{2}{3}, -\frac{4}{3})$ and $w_3^* = (1, -1, 1) - \frac{-4/3}{8/3}(\frac{2}{3}, \frac{2}{3}, -\frac{4}{3}) - \frac{1}{3}(1, 1, 1) = (1, -1, 0)$. The matrix (μ_{ij}) is:

$$(\mu_{ij}) = \begin{pmatrix} 1 & 0 & 0\\ \frac{1}{3} & 1 & 0\\ \frac{-1}{2} & \frac{1}{3} & 1 \end{pmatrix}$$

Now Round(μ_{ij}) = 0 whenever i < j, and so the for-loops of **BasisReduction** will not be the first part of the algorithm to alter the w_i , w_i^* or μ_{ij} . But $|w_1|^2 = 3$, $|w_2^*|^2 = \frac{8}{3}$ and $|w_3^*|^2 = 2$, and we have $|w_1^*|^2 \leq 2|w_2^*|^2$ and $|w_2^*|^2 \leq 2|w_3^*|^2$. So the if-loop in **BasisReduction** will not perform the initial change of the w_i , w_i^* or μ_{ij} , and will simply increment the counter i. Therefore the reduced basis is ((1,1,1), (1,1,-1), (1,-1,1)).