
MAS400: Solutions 6

Throughout this sheet F will denote an arbitrary field unless otherwise
stated.

1. Show that for a given monomial order 6 on R 6 F [x1, . . . , xn] the reduced Gröbner basis of any

ideal I 6 R is unique with respect to 6. (The reduced Gröbner basis of I can depend on the

monomial order chosen.)

Let G = {g1, . . . , gs} be a reduced Gröbner basis for I. Then lt gi 6= lt gj

whenever i 6= j (by the definition of a reduced Gröbner basis), and also
lt gi | lt gj whenever i 6= j. So order G so that lt g1 < lt g2 < · · · < lt gs.
Now let J := 〈lt G〉 = 〈lt I〉, so that J is a monomial ideal. By Lemma
D, if f is a monomial in J then lt gi | f for some i. Thus for all k,
lt gk /∈ 〈lt g1, . . . , lt gk−1〉. Let m1 be the minimum monomial in J .
Then lt gi | m1 for some i, and thus lt g1 6 lt gi 6 m1. But lt gk ∈ J for
all k and so m1 6 lt g1, and thus lt g1 = m1 (and i = 1). Now define
m2 to be the least monomial in J not belonging to 〈m1〉, and for all
k let mk be the least monomial in J not belonging to 〈m1, . . . ,mk−1〉
(if such exists). Evidently lt g2 ∈ J \ 〈m1〉 and so m2 6 lt g2. Since
m2 is divisible by some lt gi for i 6= 1 we get lt g2 6 lt gi 6 m2 and so
m2 = lt g2. Similarly, using induction, we get that mk = lt gk for all
k. (Note that mi will be defined for 1 6 i 6 s, but that ms+1 will not
be since J = 〈lt G〉.) Therefore lt G is uniquely determined, even as a
multiset.

Let G′ = {h1, . . . , hs} be ‘another’ reduced Gröbner basis for I where
lt gi = lt hi for all i. The terms of gi − hi are not divisible by any of
the lt gj (resp. lt hj). (The only terms of gi or hi divisible by any lt gj

or lt hj is lt gi = lt hi, in the case i = j.)

2. Find an algorithm for reducing a Gröbner basis (for an ideal I of F = [x1, . . . , xn] w.r.t. some

monomial order 6) to a reduced Gröbner basis. Write the algorithm in pseudo-code.

Given a Gröbner basis G = {g1, . . . , gm} of I we first perform the
obvious first steps:

• Replace gi by gi/ lc gi for all i.

• Order G so that lt g1 6 lt g2 6 · · · 6 lt gm.

• For 1 6 j 6 m if there is i < j such that lt gi | lt gj then remove gj

(there will always be an ‘unremovable’ gi with this property, for gi

is removed only if lt gk | lt gi for some k < i, but then lt gk | lt gj).
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So now we have a Gröbner basis G = {g1, . . . , gm} such that lt g1 <
lt g2 < · · · < lt gm and lc gi = 1 for all i. Evidently lt gj does not
divide any term of gi whenever i < j. We now produce a reduced
Gröbner basis G = {g′1, . . . , g′m} for I, where lt gi = lt g′i for all i.
This is done recursively as follows. Let g′1 = g1. Initially, we assign
g′2 = g2. Now let t be the largest term of g′2 divisible by lt g1 and
define (new) g′2 := g′2 − (t/ lt g1)g1, and continue until no such term
exists. This does not alter lt gi for any i. Similarly once we have
assigned g′1, . . . , g

′
k−1 we initially let g′k = gk, and let t be the largest

term of g′k divisible by a lt gi (where necessarily i < k) and define
(new) g′k := g′k − (t/ lt gi)gi, and continue until no such term exists.
(I’ll leave it to you to show that this process terminates for each k.)
The final {g′1, . . . , g′m} is a reduced Gröbner basis for I.)

Pseudo-code is given on a separate sheet. (The reduced Gröbner bases
given below satisfy lt g1 > lt g2 > · · ·.)

3. Let G be a Gröbner basis for the non-zero ideal I 6 F [x]. Show that there exists f ∈ F [x] such

that f ∈ G and I = 〈f〉.

If f 6= 0 then lt f ∈ {1, x, x2, . . .}, and if g ∈ I \ {0} and lt g = xi

then for all j > 0 we have gxj ∈ I and lt(gxj) = xi+j. Therefore
〈lt G〉 = 〈lt I〉 = {xm, xm+1, xm+2, . . .} for some m ∈ N. So pick g ∈ G
such that lt g = xm, so that 〈lt G〉 = 〈lt g〉, and so {g} is a Gröbner
basis for I, in particular I = 〈g〉 and {g} ⊆ G. (The reader may like to
ponder the proof where I showed that all non-zero ideals I of F [x] are
generated by any element g ∈ I where deg g is minimal among non-zero
elements of I.)

4. Use elimination ideals to determine the following affine varieties.

(a) V(xy − 1, y2 − 1) ⊆ C2.

(b) V(xy − 1, xz − 1) ⊆ C3.

(c) V(xy − 1, yz − 1, zx− 1) ⊆ C3.

(d) V(xy2 − 1, xz2 − 1) ⊆ C3.

(e) V(x2y − 1, x2z − 1) ⊆ C3.

(f) V(x2y − 1, y2z − 1, z2x− 1) ⊆ C3.

(g) V(x3y − 1, xy3 − 1) ⊆ C2.

Recall that 6lex (with x > y > z) is a j-elimination order for all relevant
j. Except for the last one we calculated reduced Gröbner bases of the
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corresponding ideals in Q[x, y] or Q[x, y, z] w.r.t. 6lex with x > y > z
on the last exercise sheet. Answers are as follows.

(a) {x− y, y2 − 1}.
(b) {xz − 1, y − z}.
(c) {x− z, y − z, z2 − 1}.
(d) {xz2 − 1, y2 − z2}.
(e) {x2z − 1, y − z}.
(f) {x− z7, y − z4, z9 − 1}.
(g) {x− y5, y8 − 1}.

It was remarked in lectures that calculations for things like Multivariate
Division and Gröbner Basis are unaltered when passing to field exten-
sions. So the above are also reduced Gröbner bases for the appropriate
ideals of C[x, y] or C[x, y, z] (depending on case). (The affine varieties
will vary subtlely on field extension.) Using the notation C× := C\{0},
ζ = exp(2πi/9), ω = exp(2πi/8) the solutions are as follows.

(a) V(xy − 1, y2 − 1) = { (a, a) : a ∈ {1,−1} }.
(b) V(xy − 1, xz − 1) = { (a−1, a, a) : a ∈ C× }.
(c) V(xy − 1, yz − 1, zx− 1) = { (a, a, a) : a ∈ {1,−1} }.
(d) V(xy2 − 1, xz2 − 1) = { (a−2,±a, a) : a ∈ C× }.
(e) V(x2y−1, x2z−1) = { (±/

√
a−1, a, a) : a ∈ C× } = { (a, a−2, a−2) :

a ∈ C× }.
(f) V(x2y−1, y2z−1, z2x−1) = { (a7, a4, a) : a ∈ {1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8} }.
(g) V(x3y − 1, xy3 − 1) = { (a5, a) : a ∈ {1, ω, ω2, ω3, ω4, ω5, ω6, ω7} }.

We did Part (b) in lectures. We’ll do Part (d) as a sample solution.
Here we have G2 = G ∪ C[z] = ∅, G1 = G ∪ C[y, z] = {y2 − z2} and
G2 = G ∪ C[x, y, z] = G = {xz2 − 1, y2 − z2}. Thus I2 = 0 ⊆ C[z],
I1 = 〈y2 − z2〉 ⊆ C[y, z] and I0 = I = 〈xz2 − 1, y2 − z2〉 ⊆ C[x, y, z].
Therefore VI2 = { (a) : a ∈ C }. Fix a ∈ C. We get

{ b : b ∈ C | (b, a) ∈ VI1 } = V(y2 − a2) = {a,−a}
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and so VI1 = { (±a, a) : a ∈ C }. Fix a ∈ C and ε ∈ {1,−1}. Then

{ b : b ∈ C | (b, εa, a) ∈ VI0 } = V(xa2 − 1, (εa)2 − a2) = V(xa2 − 1).

If a = 0 we get V(xa2−1) = ∅, otherwise V(xa2−1) = a−2. Therefore
VI = VI0 = { (a−2,±a, a) : a ∈ C× }.
It should be noted that these particular examples are more easily solved
not using Gröbner bases and elimination ideals. In this question, we
are being asked to solve systems of equations of the form xiyjzk = 1,
i, j, k ∈ N, where in each case, and for each relevant variable, there
is at least one equation involving that variable. Moreover, generally
there are enough equations involving a variable to allow substitution
to take place. For example in Part (f) we are trying to solve x2y− 1 =
y2z − 1 = z2x − 1 or x2y = y2z = z2x = 1, whence 0 /∈ {x, y, z}.
Now z2x = 1 gives x = z−2, whence we obtain the system of equations
z−4y = y2z = 1. Thus y = z4 and y2z = 1 gives z9 = 1. So we get the
same answer as above.

For the system of equations xmy − 1 = xym − 1 = 0 for m > 2 (gen-
eralisation of Part (g)) the equation xym − 1 = 0 gives y 6= 0 and
x = y−m, and substituting into xmy − 1 = 0 gives y−m2

y − 1 = 0, or
ym2−1 = 1. So (x, y) = (λ−mi, λi) for some i ∈ {0, . . . ,m2 − 2} where
λ = exp(2πi/(m2 − 1)). (I’ll leave it is an exercise for you to see this
works.) Therefore

V(xmy − 1, xym − 1) = { (λ−mi, λi) : 0 6 i 6 m2 − 2 (i ∈ Z) } ⊆ C.

Note that if m > 2 then the reduced Gröbner basis for 〈xmy−1, xym−1〉
is {x − ym2−m−1, ym2−1}. Exceptional behaviour occurs when m = 1
(or −1).
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