
MAS400: Solutions 2

Throughout this sheet F will denote an arbitrary field unless otherwise
stated.

1. Show that Z[x] has ideals that are not generated by a single element. Thus Z[x] is not a principal

ideal domain, even though it is a unique factorisation domain.

An example of a non-principal ideal of Z[x] is I = 〈2, x〉. More gen-
erally, the ideal 〈n, x〉 is non-principal for all n ∈ Z \ {−1, 0, 1}. The
ideal I consists of all polynomials 2p(x)+xq(x), where p, q ∈ Z[x]. The
polynomial 2p(x) has all of its coefficients being even integers, while
xq(x) has zero constant term. Therefore the typical element of I is a
polynomial f(x) =

∑n
i=1 aix

i where ai ∈ Z for all i and a0 is even.
Suppose that I is principal, that is I = 〈g〉 for some polynomial g.
Then the typical member of I is gh for some h ∈ Z[x]. If g = 0 then
I = {0}, a contradiction. If deg g > 1 then gh = 0 (when h = 0) or
deg(gh) > deg g > 1, so that gh 6= 2, also a contradiction. Therefore
deg g = 0 and g = m ∈ Z \ {0} is a non-zero constant, and so all
coefficients of gh are integers divisible by m. Since x ∈ I, we need
m | 1 (in Z), forcing m = 1 or −1. But 1,−1 /∈ I, a contradiction that
(finally) shows that I is non-principal. The non-principality of 〈n, x〉
for n /∈ {−1, 0, 1} is proved similarly.

2. Write, using pseudo-code, the univariate division algorithm (that is the algorithm that given

f, g ∈ F [x] with g 6= 0 will return q, r ∈ F [x] such that f = qg + r and deg r < deg g).

See separate sheet of algorithms. Version II of UnivariateDivision
is effectively a specialisation of MultivariateDivision, while Version
I (probably ‘better’) is somewhat closer to one’s idea of what long
division does.

3. Rewrite the Euclidean Algorithm so that only a bounded number of variables is used. (These

variables should be elements of F [x], and not such things as an arbitrarily long sequence of

elements of F [x].)

See separate sheet of algorithms. Version I is essentially as given in
lectures. The crucial observation is that it is unnecessary to store
p0, p1, . . . , pp−1 once we know pj and pj+1. Therefore we only need p0,
p1,p2, and we overwrite unneeded variables as appropriate. Similarly
for the aj and bj. The qj do not depend on their predecessors, and
these can simply be replaced by q. See Version II of the algorithm.

1



4. Show that the only monomial order on N is x0 < x1 < x2 < · · · < xi < xi+1 < · · ·.

Note the monomial xi corresponds to i ∈ N and (i) ∈ N1. In lectures we
showed that 0 < a for all non-zero a ∈ Nn whenever < is a monomial
order. So let < be a monomial order on N. We certainly have 0 < 1,
and thus also m < m + 1 for all m ∈ N. So we have 0 < 1, 1 < 2,
2 < 3, 3 < 4, and so on. The transitivity of < then ensures that < is
the usual order on N.

5. Show that a totally ordered set is well ordered if and only if it has no infinite descending chains.

Let S be a totally ordered set. If S contains an infinite (strictly) de-
scending chain, say

s0 > s1 > · · · > si > si+1 > · · ·

then {s0, s1, s2, . . .} has no minimal element, and so S is not well-
ordered. Conversely, suppose that S has no infinite descending chain.
Let T be a subset of S with no minimal element, so that for all t ∈ T
there exists u ∈ T such that t > u (recall that S is totally ordered).
But then we can form an infinite descending chain t0 > t1 > t2 > · · ·
where for all i we have ti ∈ T and ti+1 ∈ T is chosen to be strictly less
than ti. This contradiction establishes the result.

6. Any exercises that may be embedded in my lecture notes.

Exercise for the reader. This also applies to (most) future exercises I
may set in this way.

2


