MAS400: Solutions 2

Throughout this sheet F' will denote an arbitrary field unless otherwise
stated.

1. Show that Z|z] has ideals that are not generated by a single element. Thus Z[z] is not a principal
ideal domain, even though it is a unique factorisation domain.
An example of a non-principal ideal of Z[z] is I = (2,z). More gen-
erally, the ideal (n,x) is non-principal for all n € Z \ {—1,0,1}. The
ideal I consists of all polynomials 2p(x) +zq(x), where p, ¢ € Z[z]. The
polynomial 2p(x) has all of its coefficients being even integers, while
xq(z) has zero constant term. Therefore the typical element of [ is a
polynomial f(z) = ", a;a* where a; € Z for all i and aq is even.
Suppose that [ is principal, that is I = (g) for some polynomial g.
Then the typical member of I is gh for some h € Z[z]|. If g = 0 then
I = {0}, a contradiction. If degg > 1 then gh = 0 (when h = 0) or
deg(gh) > degg > 1, so that gh # 2, also a contradiction. Therefore
degg = 0 and ¢ = m € Z \ {0} is a non-zero constant, and so all
coefficients of gh are integers divisible by m. Since z € I, we need
m |1 (in Z), forcing m =1 or —1. But 1, —1 ¢ I, a contradiction that
(finally) shows that [ is non-principal. The non-principality of (n,x)
for n ¢ {—1,0,1} is proved similarly.

2. Write, using pseudo-code, the univariate division algorithm (that is the algorithm that given
f,g € F[z] with g # 0 will return ¢, € F[z] such that f = gg + r and degr < degg).
See separate sheet of algorithms. Version II of UnivariateDivision
is effectively a specialisation of MultivariateDivision, while Version
[ (probably ‘better’) is somewhat closer to one’s idea of what long
division does.

3. Rewrite the Euclidean Algorithm so that only a bounded number of variables is used. (These

variables should be elements of F[z], and not such things as an arbitrarily long sequence of
elements of F[x].)
See separate sheet of algorithms. Version I is essentially as given in
lectures. The crucial observation is that it is unnecessary to store
D0, P1s - - -, Pp—1 once we know p; and p;y1. Therefore we only need py,
p1,p2, and we overwrite unneeded variables as appropriate. Similarly
for the a; and b;. The ¢; do not depend on their predecessors, and
these can simply be replaced by ¢. See Version II of the algorithm.



4.

Show that the only monomial order on Nis 20 < 2! < 2?2 < --- <2 <zl < ...

Note the monomial z* corresponds to ¢ € N and (i) € N'. In lectures we
showed that 0 < a for all non-zero a € N whenever < is a monomial
order. So let < be a monomial order on N. We certainly have 0 < 1,
and thus also m < m + 1 for all m € N. So we have 0 < 1, 1 < 2,
2 < 3,3 < 4, and so on. The transitivity of < then ensures that < is
the usual order on N.

Show that a totally ordered set is well ordered if and only if it has no infinite descending chains.
Let S be a totally ordered set. If S contains an infinite (strictly) de-
scending chain, say

89> 81 > v > 8 > Sy >

then {sg, s1, S2,...} has no minimal element, and so S is not well-
ordered. Conversely, suppose that S has no infinite descending chain.
Let T be a subset of S with no minimal element, so that for all t € T
there exists w € T such that ¢ > u (recall that S is totally ordered).
But then we can form an infinite descending chain tg > t; > t9 > ---
where for all 7 we have t; € T" and t;,; € T is chosen to be strictly less
than ¢;. This contradiction establishes the result.

. Any exercises that may be embedded in my lecture notes.

Exercise for the reader. This also applies to (most) future exercises I
may set in this way.



