MAS400: Solutions 2

Throughout this sheet F will denote an arbitrary field unless otherwise stated.

1. Show that $\mathbb{Z}[x]$ has ideals that are not generated by a single element. Thus $\mathbb{Z}[x]$ is not a principal ideal domain, even though it is a unique factorisation domain.

An example of a non-principal ideal of $\mathbb{Z}[x]$ is $I = \langle 2, x \rangle$. More generally, the ideal $\langle n, x \rangle$ is non-principal for all $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$. The ideal I consists of all polynomials 2p(x) + xq(x), where $p, q \in \mathbb{Z}[x]$. The polynomial 2p(x) has all of its coefficients being even integers, while xq(x) has zero constant term. Therefore the typical element of I is a polynomial $f(x) = \sum_{i=1}^{n} a_i x^i$ where $a_i \in \mathbb{Z}$ for all i and a_0 is even. Suppose that I is principal, that is $I = \langle g \rangle$ for some polynomial g. Then the typical member of I is gh for some $h \in \mathbb{Z}[x]$. If g = 0 then $I = \{0\}$, a contradiction. If deg $g \ge 1$ then gh = 0 (when h = 0) or deg $(gh) \ge \deg g \ge 1$, so that $gh \ne 2$, also a contradiction. Therefore deg g = 0 and $g = m \in \mathbb{Z} \setminus \{0\}$ is a non-zero constant, and so all coefficients of gh are integers divisible by m. Since $x \in I$, we need $m \mid 1$ (in \mathbb{Z}), forcing m = 1 or -1. But $1, -1 \notin I$, a contradiction that (finally) shows that I is non-principal. The non-principality of $\langle n, x \rangle$ for $n \notin \{-1, 0, 1\}$ is proved similarly.

- 2. Write, using pseudo-code, the univariate division algorithm (that is the algorithm that given $f, g \in F[x]$ with $g \neq 0$ will return $q, r \in F[x]$ such that f = qg + r and $\deg r < \deg g$). See separate sheet of algorithms. Version II of UnivariateDivision is effectively a specialisation of MultivariateDivision, while Version I (probably 'better') is somewhat closer to one's idea of what long division does.
- 3. Rewrite the Euclidean Algorithm so that only a bounded number of variables is used. (These variables should be elements of F[x], and not such things as an arbitrarily long sequence of elements of F[x].) See separate sheet of algorithms. Version I is essentially as given in lectures. The crucial observation is that it is unnecessary to store $p_0, p_1, \ldots, p_{p-1}$ once we know p_j and p_{j+1} . Therefore we only need p_0, p_1, p_2 , and we overwrite unneeded variables as appropriate. Similarly for the a_j and b_j . The q_j do not depend on their predecessors, and these can simply be replaced by q. See Version II of the algorithm.

- 4. Show that the only monomial order on \mathbb{N} is $x^0 < x^1 < x^2 < \cdots < x^i < x^{i+1} < \cdots$. Note the monomial x^i corresponds to $i \in \mathbb{N}$ and $(i) \in \mathbb{N}^1$. In lectures we showed that 0 < a for all non-zero $a \in \mathbb{N}^n$ whenever < is a monomial order. So let < be a monomial order on \mathbb{N} . We certainly have 0 < 1, and thus also m < m + 1 for all $m \in \mathbb{N}$. So we have 0 < 1, 1 < 2, 2 < 3, 3 < 4, and so on. The transitivity of < then ensures that < is the usual order on \mathbb{N} .
- 5. Show that a totally ordered set is well ordered if and only if it has no infinite descending chains. Let S be a totally ordered set. If S contains an infinite (strictly) descending chain, say

$$s_0 > s_1 > \dots > s_i > s_{i+1} > \dots$$

then $\{s_0, s_1, s_2, \ldots\}$ has no minimal element, and so S is not wellordered. Conversely, suppose that S has no infinite descending chain. Let T be a subset of S with no minimal element, so that for all $t \in T$ there exists $u \in T$ such that t > u (recall that S is totally ordered). But then we can form an infinite descending chain $t_0 > t_1 > t_2 > \cdots$ where for all i we have $t_i \in T$ and $t_{i+1} \in T$ is chosen to be strictly less than t_i . This contradiction establishes the result.

6. Any exercises that may be embedded in my lecture notes.

Exercise for the reader. This also applies to (most) future exercises I may set in this way.