MAS400: Solutions 1

Throughout this sheet F will denote an arbitrary field unless otherwise stated.

- 1. For the following pairs of elements $f, g \in F[x]$ find the g.c.d. (h say) of f and g and also find elements $a, b \in F[x]$ such that af + bg = h. (You should normalise h so that its leading coefficient is 1.)
 - (a) $f = x^2 2x + 1$ and $g = x^3 + 3x^2 7x + 3$.
 - (b) $f = x^3 + 1$ and $g = x^4 + 5x^3 + 3x^2 2x 1$.
 - (c) $f = x^3 2$ and $g = 2x^2 + 3x 1$.
 - (d) $f = x^2 + 5x + 4$ and $g = 3x^2 2x + 1$.

[You may assume that F has characteristic 0, say $F = \mathbb{Q}$. It is also interesting to see what divergence we get from the general case when we set $F = \mathbb{F}_p$ for p a prime.]

The g.c.d. algorithm works with a particular field, not an arbitrary field. First, we will carry out the algorithm when $F = \mathbb{Q}$ (the workings will be identical over any field of characteristic 0). The answers are as follows.

- (a) h = x 1, a = (-x 5)/2, b = 1/2. Valid for all fields not of characteristic 2.
- (b) h = x + 1, $a = (x^2 + 6x + 8)/9$, b = (-x 1)/9. Valid for all fields not of characteristic 3.
- (c) h = 1, a = (-2x 5)/11, $b = (x^2 + x 1)/11$. Valid for all fields not of characteristic 11.
- (d) h = 1, a = (-51x + 67)/342, b = (17x + 74)/342. Valid for all fields not of characteristics 2, 3, 19.
- 2. Show that the ideal of $I = \langle x, y \rangle$ of F[x, y] cannot be generated by a single element.

The ideal I consists of all polynomials with zero constant term. We let $J = \langle x^2, xy, y^2 \rangle$. Thus J consists of those polynomials that have zero coefficients for the monomials $1 = x^0 y^0$, $x = x^1 y^0$ and $y = x^0 y^1$. Observe that whenever $q = q(x, y) \in I$ we have $xq, yq \in J$. Suppose that there is a $g \in F[x]$ such that $I = \langle g \rangle$. Then $g \in I$, so that $g = \alpha x + \beta y + j$ where $\alpha, \beta \in F$ and $j \in J$. Take $p \in F[x]$. Then $p = \gamma + q$ where $\gamma \in F$ and $q \in I$. So $gp = \alpha \gamma x + \beta \gamma y + h$ where $h = \alpha xq + \beta yq + jp \in J$. Since $x, y \in I$ there exist $p_1, p_2 \in R$ such that $gp_1 = x$ and $gp_2 = y$. We can choose notation such that for i = 1, 2we have $\gamma_i \in F$ and $p_i - \gamma_i \in I$, giving $gp_i = \alpha \gamma_i x + \beta \gamma_i y + h_i$ for some $h_i \in J$. But then $(\alpha \gamma_1, \beta \gamma_1) = (1, 0)$ and $(\alpha \gamma_2, \beta \gamma_2) = (0, 1)$. The former equation gives $\alpha \neq 0, \beta = 0$, while the latter gives $\alpha = 0, \beta \neq 0$, a contradiction. Thus I cannot be singly generated.

3. For $n \ge 2$ show that the ideal of $I = \langle x_1, x_2, \dots, x_n \rangle$ of $F[x_1, x_2, \dots, x_n]$ cannot be generated by a single element. What is the minimum number of elements required to generate I? Justify your answer.

We require a minimum of n generators, for example $x_1, x_2, \ldots, x_n; n-1$ elements cannot generate I. The ideal I consists of all polynomials with zero constant term. We let $J = \langle x_i^2, x_i x_j : 1 \leq i, j \leq n \rangle$. (In fact $J = I^2 = II$.) Thus J consists of those polynomials that have zero coefficients for the monomials $1, x_1, x_2, \ldots, x_n$.

Now the typical element of I has the form $f = \lambda_1 x_1 + \dots + \lambda_n x_n + g$ where $g \in J$ and $\lambda_i \in F$ for all i, and the typical element of $F[x_1, x_2, \dots, x_n]$ is $p = \kappa + q$ where $q \in I$ and $\kappa \in F$. We have $qf \in J$, and thus $pf = \kappa(\lambda_1 x_1 + \dots + \lambda_n x_n) + h$ where $h = qf + \kappa g \in J$. Let $f_i = \lambda_{i1}x_1 + \dots + \lambda_{in}x_n + g_i$ where $g_i \in J$ and $\lambda_{ij} \in F$ for all i and j. If $p_i \in F[x_1, x_2, \dots, x_n]$ we shall define κ_i and q_i by $p_i = \kappa_i + q_i$ where $\kappa_i \in F$ and $q_i \in I$.

If we identify $f = \lambda_1 x_1 + \dots + \lambda_n x_n + g$ with the vector $v = (\lambda_1, \dots, \lambda_n) \in F^n$ then this forces f_i to be identified with $v_i = (\lambda_{i1}, \dots, \lambda_{in})$. (The mapping from I to F^n is well-defined since $f \in I$ has a unique expression in the form $f = \lambda_1 x_1 + \dots + \lambda_n x_n + g$ where $g \in J$ and $\lambda_i \in F$.) Anyway, the $p_1 f_1 + \dots + p_m f_m$ gets mapped to $\kappa_1 v_1 + \dots + \kappa_m v_m \in F^n$. The v_i are constant vectors (depending on f_i) in F^n , and since all spanning sets of F^n require at least n vectors it follows that I also requires at least n generators.

4. Let $n, m \in \mathbb{N}$, with $n \ge 1$. How many *n*-tuples $(a_1, \ldots, a_n) \in \mathbb{N}^n$ are there such that $\sum_{i=1}^n a_i = m$? This is a standard combinatorial trick. We make a one-to-one correspondence between such *n*-tuples and certain ways of placing n + 1 crosses into a line m + n + 1 boxes, with just one cross per box and the rest of the boxes being left blank. The crosses are labelled as the 0th cross up to the *n*th cross, with the 0th cross being placed in the leftmost box, the *n*th cross being placed in the rightmost box, and the *i*th cross being placed in a box strictly to the left of the *j*th cross whenever i < j. The placement corresponding to the *n*-tuple (a_1, \ldots, a_n) has a_i blank boxes between the *i*th cross and the (i + 1)th cross. Of course, it is also possible to determine the *n*-tuple (a_1, \ldots, a_n) from the valid placement of n + 1 crosses into a line of m + n + 1 boxes. So we have a 1-to-1 correspondence between *n*-tuples and valid placements.

Now the first and last boxes contain crosses, but any distribution of the remaining n-1 crosses among the remaining m+n-1 boxes is possible. There are $\binom{m+n-1}{n-1} = \binom{m+n-1}{m}$ such distributions, and therefore $\binom{m+n-1}{n-1} = \binom{m+n-1}{m}$ such *n*-tuples.