MAS400: Exercises 8

Let v_1, \ldots, v_n be linearly independent vectors in \mathbb{R}^n , such that (v_1, \ldots, v_n) has Gram-Schmidt orthogonalisation $((v_1^*, \ldots, v_n^*), (\mu_{st}))$. Determine the Gram-Schmidt orthogonalisations $((w_1^*, \ldots, w_n^*), (\xi_{st}))$ of (w_1, \ldots, w_n) in the following cases.

1.
$$w_i = \lambda v_i$$
, $w_j = v_j$ if $j \neq i$, where $\lambda \neq 0$ ($\lambda \in \mathbb{R}$).

2.
$$w_i = v_i - \lambda v_k$$
 with $k < i$, $w_j = v_j$ if $j \neq i$.

3.
$$w_i = v_{i+1}, w_{i+1} = v_i, w_j = v_j \text{ if } j \neq i, i+1.$$

You may like to think about what happens in these two cases too. (It is not really possible to write down exact answers for these.)

4.
$$w_i = v_i - \lambda v_k$$
 with $k > i$, $w_j = v_j$ if $j \neq i$.

5.
$$w_i = v_k, w_k = v_i \text{ (wlog } i < k), w_j = v_j \text{ if } j \neq i, k.$$