MAS400: Exercises 2

Throughout this sheet F will denote an arbitrary field unless otherwise stated.

- 1. Show that $\mathbb{Z}[x]$ has ideals that are not generated by a single element. Thus $\mathbb{Z}[x]$ is not a principal ideal domain, even though it is a unique factorisation domain.
- 2. Write, using pseudo-code, the univariate division algorithm (that is the algorithm that given $f, g \in F[x]$ with $g \neq 0$ will return $q, r \in F[x]$ such that f = qg + r and deg $r < \deg g$).
- 3. Rewrite the Euclidean Algorithm so that only a bounded number of variables is used. (These variables should be elements of F[x], and not such things as an arbitrarily long sequence of elements of F[x].)
- 4. Show that the only monomial order on \mathbb{N} is $x^0 < x^1 < x^2 < \cdots < x^i < x^{i+1} < \cdots$.
- 5. Show that a totally ordered set is well ordered if and only if it has no infinite descending chains.
- 6. Any exercises that may be embedded in my lecture notes.