

M.Sc. Examination 2007

MTHM032 Advanced Algorithmic Mathematics

Duration: 3 hours

Date and time: 29th May 2007, 10:00-13:00

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best 4 questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Show your calculations.

Throughout, $\mathbb{N} = \{0, 1, ...\}$ denotes the set of non-negative integers and *F* denotes an arbitrary field.

- (a) Define what is meant by a *partial order*, *total order* and *well-order* on a set S. [6]
- (b) For each of the three cases below give, with a very brief justification, examples (S, <) such that:
 - (i) < is a partial order but not a total order on the set S;
 - (ii) < is a total order but not a well-order on the set *S*;
 - (iii) \langle is a well-order on the set *S*. [3]
- (c) Define what is meant by a *monomial order* on $F[x_1, ..., x_n]$ (equivalently, on \mathbb{N}^n). [2]
- (d) Define what is meant by the *lexicographic order* \leq_{lex} on \mathbb{N}^n . [2]
- (e) Show that ≤_{lex} is a total order, a well-order and a monomial order on Nⁿ. You may assume that a set S is well-ordered if and only if it has no infinite strictly descending chains. [12]

Question 2 (25 marks)

- (a) Write down the algorithm MultivariateDivision, stating the input and output precisely. [9]
- (b) Show that the algorithm MultivariateDivision terminates. [3]
- (c) Apply MultivariateDivision to divide $x^4y + x^2y^2 xy^2 + xy + x$ by $\{f_1, f_2\}$ = $\{x^2 - y, xy - x + y\}$ (in that order), using the lexicographic order on F[x, y]in which $x >_{\text{lex}} y$. [5]
- (d) Let $A \subseteq \mathbb{N}^n$, let $I = \langle \underline{x}^{\alpha} : \alpha \in A \rangle$ be an ideal of $R = F[x_1, \dots, x_n]$, and let $f \in R$. Show that $f \in I$ if and only if each term of f is divisible by \underline{x}^{α} for some $\alpha \in A$. [6]
- (e) State Dickson's Lemma.

[2]

2

Question 3 (25 marks)

In this question $R = F[x_1, ..., x_n]$, and a monomial order \leq on R is fixed.

- (a) For $S \subseteq R$ define lt S (with respect to \leq). [1]
- (b) Let *I* be an ideal of *R* and let $G \subseteq I$. State precisely what it means for *G* to be a Gröbner basis for *I* (with respect to \leq). [4]
- (c) What does it mean for *G* to be a reduced Gröbner basis for the ideal it generates? [3]
- (d) Let *G* be a Gröbner basis for an ideal *I* of *R* and let $f \in R$. Show that there exist unique $h, r \in R$ such that:
 - 1. f = h + r,
 - 2. $h \in I$, and
 - 3. r = 0 or no term of r is divisible by any element of lt G. [10]
- (e) Let $f, f_1, \ldots, f_s, g_1, \ldots, g_t \in R$, with ideals $I = \langle f_1, \ldots, f_s \rangle$ and $J = \langle g_1, \ldots, g_t \rangle$. Explain precisely how to determine:
 - (i) whether $f \in I$;
 - (ii) whether $I \subseteq J$; and
 - (iii) whether I = J. [7]

Question 4 (25 marks)

In parts (a)–(c), $R = F[x_1, ..., x_n]$, and a monomial order \leq on R is fixed.

- (a) Define the *S*-polynomial S(f,g) for polynomials $f,g \in R$. [2]
- (b) Let 0 ∉ {f₁,...,f_s} ⊆ R, and let I = ⟨f₁,...,f_s⟩. State a theorem involving S-polynomials that gives a necessary and sufficient condition for {f₁,...,f_s} to be a Gröbner basis of I (with respect to ≤).
- (c) Give pseudo-code for the algorithm GröbnerBasis that includes accurate descriptions of the input and output. [10]
- (d) Find a Gröbner basis for the ideal I = ⟨f₁, f₂⟩ ≤ F[x, y], where f₁ = x³ + y³ and f₂ = x² + y², under the lexicographic monomial ordering in which x >_{lex} y. Hence, or otherwise, determine the affine variety V(x³ + y³, x² + y²) ⊆ F². (Note that the answers do depend on the field *F*, in particular on whether 2 = 0 holds in *F*.) [10]

Question 5 (25 marks)

- (a) Let (v₁,...,v_r) be a sequence of ℝ-linearly independent vectors of ℝⁿ (where r ≤ n, and you may assume that r ≥ 1). State precisely how to determine the *Gram–Schmidt orthogonalisation*, or *GSO*, ((v₁^{*},...,v_r^{*}), (μ_{ij})) of (v₁,...,v_r), and state the main properties of this GSO. [7]
- (b) Prove that $|v_i| \ge |v_i^*|$ for $1 \le i \le r$, where |v| denotes $\sqrt{v \cdot v}$. [3]
- (c) Suppose that $v = \sum_{i=1}^{n} a_i v_i$ for some $a_1, \dots, a_n \in \mathbb{Z}$. Show that if $v \neq 0$ then $|v| \ge \min\{|v_1^*|, \dots, |v_n^*|\}.$ [6]
- (d) The algorithm BasisReduction sometimes requires one to swap two adjacent basis vectors, and to update the resulting GSO. So let $2 \le i \le n$, and let $w_{i-1} = v_i$, $w_i = v_{i-1}$ and $w_j = v_j$ whenever $1 \le j \le n$ and $j \notin \{i-1,i\}$. Let $((w_1^*, \dots, w_n^*), (\xi_{kl}))$ be the GSO of (w_1, \dots, w_n) . Determine the differences between $((v_1^*, \dots, v_n^*), (\mu_{kl}))$ and $((w_1^*, \dots, w_n^*), (\xi_{kl}))$, and explain how you would calculate $((w_1^*, \dots, w_n^*), (\xi_{kl}))$ efficiently given $((v_1^*, \dots, v_n^*), (\mu_{kl}))$.

Do *not* calculate w_i^* , $\xi_{k,i}$ or $\xi_{k,i-1}$ for $k \ge i$; the other w_j^* and ξ_{kl} should be determined in terms of the v_j^* and μ_{kl} . [9]

Question 6 (25 marks)

(a) State what is meant by the lattice generated by v_1, \ldots, v_n ($v_i \in \mathbb{R}^n$ for all <i>i</i>).	[2]
(b) State what is meant by a <i>reduced basis</i> of a lattice.	[2]
(c) State precisely the input and output specifications of the algorithm BasisReduction.	[5]
(d) Let $L = \langle (1, -3), (3, -7) \rangle_{\mathbb{Z}}$.	
(i) Determine the norm $ L $ of the lattice L.	[2]

(ii) Apply the algorithm BasisReduction to produce a reduced basis for L. Explain your calculations in terms of steps of the algorithm. [14]