

M. Sci. Examination 2006

MAS400 Advanced Algorithmic Mathematics

Duration: 3 hours

Date and time: 19th May 2006, 10:00-13:00

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best 4 questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Show your calculations.

Throughout, $\mathbb{N} = \{0, 1, ...\}$ denotes the set of non-negative integers and *F* denotes an arbitrary field.

Question 1 (25 marks)

- (a) Define what is meant by a *partial order*, *total order* and *well-order* on a set S. [6]
- (b) Define what is meant by a *monomial order* on $F[x_1, ..., x_n]$ (equivalently, on \mathbb{N}^n). [2]
- (c) Define what is meant by the *lexicographic order* \leq_{lex} on \mathbb{N}^n . [2]
- (d) Show that ≤_{lex} is a well-order and a monomial order on Nⁿ. You may assume that ≤_{lex} is a total order. You may also assume that a set *S* is well-ordered if and only if it has no infinite strictly descending chains. [7]
- (e) Prove that if \leq is a monomial order on \mathbb{N}^n then $(0, \ldots, 0) \leq \alpha$ for all $\alpha \in \mathbb{N}^n$. [4]
- (f) Show that if \leq is a monomial order on F[x] then $x^0 < x^1 < x^2 < \cdots$. [4]

Question 2 (25 marks)

	Write down the algorithm MultivariateDivision, stating the input and output precisely.	[10]
(b)	Show that the algorithm MultivariateDivision terminates, and produces the correct output.	[8]
(c)	Let $f, f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$ with $f_i \neq 0$ for all <i>i</i> . Let $r = f$ rem (f_1, \ldots, f_s) . Show that the ideals $\langle f, f_1, \ldots, f_s \rangle$ and $\langle r, f_1, \ldots, f_s \rangle$ coincide.	[2]

(d) Apply MultivariateDivision to divide $x^4y + x^3y + x^2y + xy + 1$ by $\{f_1, f_2\}$ = $\{x^3 + y, x^2 - xy\}$ (in that order), using the lexicographic order on F[x, y] in which x > y. [5]

Question 3 (25 marks)

In this question $R = F[x_1, ..., x_n]$, and a monomial order \leq on R is fixed.

(a)	Let $A \subseteq \mathbb{N}^n$, let $I = \langle \underline{x}^{\alpha} : \alpha \in A \rangle$ be an ideal of R , and let $f \in R$. Show that $f \in I$ if and only if each term of f is divisible by \underline{x}^{α} for some $\alpha \in A$.	[6]
(b)	State Dickson's Lemma.	[2]
(c)	For $S \subseteq R$ define lt <i>S</i> (with respect to \leq).	[1]
(d)	Let <i>I</i> be an ideal of <i>R</i> and let $G \subseteq I$. State precisely what it means for <i>G</i> to be a Gröbner basis for <i>I</i> (with respect to \leq).	[4]
(e)	Show that <i>I</i> has a Gröbner basis.	[2]
(f)	Let G be a Gröbner basis for I . Show that I is generated by G . Deduce that I is finitely generated.	[5]
(g)	Show that <i>R</i> has no infinite strictly ascending chain of ideals.	[5]

Question 4 (25 marks)

In parts (a)–(c), $R = F[x_1, ..., x_n]$, and a monomial order \leq on R is fixed.

- (a) Define the *S*-polynomial S(f,g) for polynomials $f,g \in R$. [2]
- (b) Let 0 ∉ {f₁,...,f_s} ⊆ R, and let I = ⟨f₁,...,f_s⟩. State a theorem involving S-polynomials that gives a necessary and sufficient condition for {f₁,...,f_s} to be a Gröbner basis of I (with respect to ≤).
- (c) Give pseudo-code for the algorithm GröbnerBasis that includes accurate descriptions of the input and output. [10]
- (d) Let R = F[x, y] be equipped with the monomial order \leq_{lex} where $x >_{\text{lex}} y$. Let $f_1 = x^2y + 1$, $f_2 = xy^2 + y$, and $I = \langle f_1, f_2 \rangle$. Calculate $g := S(f_1, f_2)$, placing its leading term first, and determine $r_1 := f_1 \text{ rem } (g)$ and $r_2 := f_2 \text{ rem } (g)$. Show that $I = \langle r_1, r_2, g \rangle$. Determine the reduced Gröbner basis for *I*. [Hint: Do not apply GröbnerBasis to the input $\{f_1, f_2\}$.] [8]
- (e) Use any method to determine the affine variety $\mathbb{V}(x^2y+1, xy^2+y) \subseteq F^2$. [2]

Question 5 (25 marks)

- (a) Let (v₁,...,v_r) be a sequence of ℝ-linearly independent vectors of ℝⁿ (where r ≤ n, and you may assume that r ≥ 1). State precisely how to determine the *Gram–Schmidt orthogonalisation*, or *GSO*, ((v₁^{*},...,v_r^{*}), (μ_{ij})) of (v₁,...,v_r), and state the main properties of this GSO. [7]
- (b) Prove that the vectors in (v_1^*, \dots, v_r^*) are indeed pairwise orthogonal. [5]
- (c) Prove that $|v_i| \ge |v_i^*|$ for $1 \le i \le r$, where |v| denotes $\sqrt{v \cdot v}$. [3]
- (d) Let A be the $r \times n$ matrix whose i^{th} row is v_i , and define A^* similarly. Thus

$$A := \begin{pmatrix} v_1 \\ \vdots \\ v_r \end{pmatrix} \text{ and } A^* := \begin{pmatrix} v_1^* \\ \vdots \\ v_r^* \end{pmatrix}.$$

Show that *A* and A^* are related by $A = TA^*$, and describe the structure of *T* as fully as possible. [4]

(e) Hence prove Hadamard's inequality in the form

$$\left| \det \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \right| \leqslant \prod_{i=1}^n |v_i|$$

by considering the above theory in the special case r = n. [6]

Question 6 (25 marks)

- (a) State what is meant by the lattice generated by v₁,..., v_n (v_i ∈ ℝⁿ for all i). [2]
 (b) State what is meant by a *reduced basis* of a lattice. [2]
 (c) State precisely the input and output specifications of the algorithm BasisReduction. [5]
 (d) Let L = ⟨(1,-2), (4,-5)⟩_Z. [5]
 (i) Determine the norm |L| of the lattice L. [2]
 - (ii) Apply the algorithm BasisReduction to produce a reduced basis for L. Explain your calculations in terms of steps of the algorithm. [14]